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Abstract 

Background  Understanding protein-molecular interaction is crucial for unraveling the mechanisms underlying 
diverse biological processes. Machine learning (ML) techniques have been extensively employed in predicting these 
interactions and have garnered substantial research focus. Previous studies have predominantly centered on improv-
ing model performance through novel and efficient ML approaches, often resulting in overoptimistic predictive 
estimates. However, these advancements frequently neglect the inherent biases stemming from network properties, 
particularly in biological contexts.

Results  In this study, we examined the biases inherent in ML models during the learning and prediction of protein-
molecular interactions, particularly those arising from the scale-free property of biological networks—a characteristic 
where in a few nodes have many connections while most have very few. Our comprehensive analysis across diverse 
tasks, datasets, and ML methods provides compelling evidence of these biases. We discovered that the training 
and evaluation of ML models are profoundly influenced by network topology, potentially distorting model perfor-
mance assessments. To mitigate this issue, we propose the degree distribution balanced (DDB) sampling strategy, 
a straightforward yet potent approach that alleviates biases stemming from network properties. This method further 
underscores the limitations of certain ML models in learning protein-molecular interactions solely from intrinsic 
molecular features.

Conclusions  Our findings present a novel perspective for assessing the performance of ML models in inferring 
protein-molecular interactions with greater fairness. By addressing biases introduced by network properties, the DDB 
sampling approach provides a more balanced and precise assessment of model capabilities. These insights hold 
the potential to bolster the reliability of ML models in bioinformatics, fostering a more stringent evaluation framework 
for predicting protein-molecular interactions.
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Background
In the realm of computational biology, machine learn-
ing (ML) methods have garnered considerable attention 
for predicting protein-molecular interactions, includ-
ing lncRNA-protein [1, 2], protein–protein [3–6], and 
drug-target interactions [7]. Despite numerous studies 
showcasing impressive performance on testing datasets, 
the accuracy of these models in guiding wet-lab experi-
ments remains a hurdle. This raises the question: Have 
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ML-based computational methods been overestimated? 
If so, what are the reasons behind the disparity between 
evaluation and generalization performance? Addressing 
these questions is imperative.

Early studies have suggested that the remarkable per-
formance of ML models in predicting protein–protein 
interactions might have been overstated [8, 9]. Yu et  al. 
[8] revealed that model performances vary significantly 
with different negative sampling strategies, suggesting 
that sequence-based methods may not reliably predict 
protein–protein interactions. Similarly, Park and Mar-
cotte [9] found that pair-input methods are significantly 
influenced by the paired nature of inputs and advocated 
for reporting predictive performances separately for each 
distinct test class. Despite these insights, recent stud-
ies continue to report overly optimistic model estimates 
when developing new approaches for predicting protein-
molecular interactions. We have compiled and organized 
studies on protein-molecular interaction prediction using 
random negative sampling in recent years in Additional 
file 1: Note S1 [6, 10–61]. Hence, it is crucial to meticu-
lously consider the limitations and potential biases in the 
development and evaluation of ML models for predicting 
protein-molecular interactions, particularly when inter-
preting and applying the results to real-world contexts.

In this paper, we thoroughly reviewed the overall devel-
opment process of pair-input ML models and identified 
that the overestimated model performance stems from 
negative sampling procedures. It is well-established that 
the purpose of subset sampling for cross-validation dif-
fers from that of training set sampling [62]. In cross-
validation, reducing bias is paramount to ensure that 
unbiased subsets represent the overall dataset, allowing 
evaluation results to generalize. Conversely, in training, 
the objective is to obtain subsets that facilitate effec-
tive model learning. We contend that negative sampling 
methods, such as random negative sampling commonly 
used in training, do not always yield the most suitable 
subsets for model learning. In fact, randomly sampled 
data still contain influential information, such as net-
work topology, that significantly impacts model learn-
ing. Our findings indicate that the commonly adopted 
random negative sampling strategy results in a degree 
distribution disparity between positive and negative sam-
ples. This disparity significantly influences model learn-
ing, overshadowing the significance of the node features 
themselves.

Our experiments, focusing on three prevalent pro-
tein-molecular interaction prediction tasks—lncRNA-
protein, protein–protein, and drug-target—provide a 
comprehensive investigation into both heterogeneous 
(lncRNA-protein, drug-target) and homogeneous (pro-
tein–protein) interactions. This ensures that our findings 

transcend specific molecule pairs but generalize across 
different molecular interactions, regardless of whether 
the involved nodes are of the same type. These results 
reveal that well-trained ML models tend to predict mol-
ecule pairs based solely on the degree of their nodes. In 
other words, ML models assign high interaction scores 
to pairs with high node degrees and low scores to those 
with low node degrees. Consequently, it becomes diffi-
cult for ML models to learn unique molecular represen-
tations or graph features, which are often the focal point 
of most novel method development publications. Our 
study underscores the limitations of existing ML models 
and highlights the need for new approaches that address 
these challenges to enhance the accuracy and reliability 
of predicting protein-molecular interactions.

Results
Overview
In this paper, we approach the task of predicting protein-
molecular interactions by adopting a link prediction per-
spective within protein-molecular interaction graphs. 
Figure 1b illustrates the diverse array of ML frameworks 
utilized for predicting protein-molecular interactions, 
encompassing two pivotal stages: molecule encoding 
and classification. Notably, due to the absence of nega-
tive pairs (non-interactive pairs) and the presence of only 
experimentally verified positive pairs (interactive pairs), 
negative pairs are generated by sampling from the com-
plement of the true molecular network prior to model 
training, as depicted in Fig. 1a.

However, conventional random negative sampling 
often results in a significant degree distribution disparity 
between positive and negative samples, stemming from 
the scale-free property of most biological networks, as 
illustrated in Fig. 1c. This disparity is evident in the box-
plot on the left-hand side of Fig.  1d. Consequently, the 
ML model may inadvertently learn this degree-based 
difference and predict interaction probabilities primar-
ily based on sample degrees, rather than capturing the 
intrinsic molecular features, as shown on the right-hand 
side of Fig.  1d. To mitigate this issue, we introduce a 
straightforward yet effective negative sampling strategy, 
termed degree distribution balanced (DDB), which neu-
tralizes this disparity and enables the model to genu-
inely learn interaction relationships from the underlying 
molecular features, as demonstrated in Fig. 1e. Our anal-
ysis underscores the crucial role of negative sample col-
lection and the potential ramifications of sampling biases 
on protein-molecular interaction prediction.

Random negative sampling induces prediction bias
In this work, we have scrutinized the influence of dis-
tribution discrepancies between positive and negative 
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pairs, stemming from the scale-free attribute of biologi-
cal networks. These differences are internalized by ML 
models during training, ultimately leading to biased 
predictions grounded on the degree of pairs within 
their respective scale-free networks. To elucidate this 
phenomenon, we benchmarked three categories of 
biological networks, namely lncRNA-protein interac-
tions, protein–protein interactions, and drug-target 
interactions, as summarized in Table  1. We leveraged 
three ML methods—Noise-RF, Seq-RF, and Seq-Deep 
(detailed in Methods)—to learn from these networks 

and generate predictions. Notably, we adopted a ran-
dom sampling strategy to create negative samples for 
both training and testing datasets in this context. To 
ensure clarity, the ratio of positive to negative sam-
ples was maintained at 1:1 for both datasets, which 
aligns with the sparsity of biological networks and does 
not undermine the generalizability of our test evalua-
tion results. Instead, it addresses the extreme imbal-
ance between positive and negative samples, enabling 
the model to focus more intently on the distinctions 
between positive and negative samples, thereby bolster-
ing its generalization capability.

Fig. 1  This figure illustrates the influence of a scale-free network dataset on a pair-input ML model, affecting its learning bias and evaluation. 
a The compiled molecular network comprises interacting samples (positive pairs) but does not inherently include non-interacting samples 
(negative pairs). Traditional supervised ML methods (as shown in subfigure b) require both positive and negative pairs for training and evaluation. 
Consequently, negative pairs are typically sampled from the complement graph of the known molecular networks (i.e., node pairs not connected 
in the observed network). b A fundamental ML framework for protein-molecular interactions is demonstrated. Two molecules (M1 and M2) are 
encoded into feature vectors, which are then concatenated to signify their connection. These concatenated features serve as input to train an ML 
model predicting the interaction probability between the molecule pair. c An exemplar biological network, specifically the yeast gene interactive 
network, demonstrates the presence of a scale-free property. d Random sampling techniques result in an imbalanced degree distribution 
between positive and negative samples. Our analysis indicates that this distribution disparity correlates strongly with the predicted linkage 
probability and link degree in the ML model’s outputs. e To counteract the distribution imbalance, a novel sampling strategy called “degree 
distribution balanced (DDB) sampling” is introduced. By utilizing this method to generate negative samples, the correlation between linkage 
probability and link degree is reduced
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Evaluation in transductive prediction
During the transductive validation, overlap between vali-
dation and training dataset nodes is conceivable. This 
validation method entails randomly selecting a subset 
of experimentally verified interactive pairs to form the 
validation dataset. The transductive evaluation results for 
the eight benchmark datasets are exhaustively detailed 
in Table  2. Remarkably, all classifiers, including Noise-
RF, exhibited commendable performance across these 
datasets. This favorable outcome is further elucidated by 
Fig. 2a.

The violin plots in the left panels of Fig.  2a depict 
the distribution of pair degrees, defined as the sum of 
the degrees of two molecules within a pair. The results 
unequivocally reveal a discernible difference between 
positive and negative sets when negative samples are 

randomly drawn for all three tasks. Specifically, the 
degrees of pairs in the positive set surpass those in the 
negative set.

Subsequently, we computed the average predicted 
scores using ML methods for pairs with identical degrees 
within each set and plotted histograms of predicted 
scores against pair degrees in Fig.  2a. A robust correla-
tion between predicted scores and pair degrees was 
observed for both positive and negative datasets. Conse-
quently, pairs with higher degrees consistently received 
higher interaction scores, whereas those with lower 
degrees garnered lower scores. Considering that pair 
degrees in the positive set were substantially higher than 
those in the negative set, the Noise-RF model’s impres-
sive performance can be attributed to this degree distri-
bution disparity. For instance, in the NPInter 4.0 dataset, 
nearly 98.9% of pairs in the positive set exhibited degrees 
exceeding 8, whereas 96.1% of randomly sampled nega-
tive pairs had degrees below 8. Thus, the correlation 
between prediction scores and pair degrees established 
a clear boundary distinguishing the two sets. Despite 
Noise-RF achieving a remarkable AUC value of 0.993, it 
exhibited a pronounced bias.

Evaluation in inductive prediction
To decouple from the biological network’s topologi-
cal structure, we adopted the evaluation framework 
proposed by Park and Marcotte [9]. This strategy cat-
egorized pairs into three classes: fully observed in 
the training set (C1, where both components of the 
test molecular pair were present in the training data), 
partially observed in the training set (C2, where only 
one component of the pair was previously observed), 
and entirely unseen in the training set (C3, with no 

Table 1  Characteristics of datasets. LPI stands for lncRNA-protein interaction, PPI represents protein–protein interaction, and DTI 
denotes drug-target interaction

Dataset Origin Processed Power law

Nodes Edges Nodes Edges

LPI NPInter v4.0 [63, 64] LncRNA: 43,945
Pro: 3446

373,947 LncRNA: 27,257
Pro: 2440

214,957 2.12

RAID v2.0 [65, 66] LncRNA: 1670
Pro: 8688

30,958 LncRNA: 1093
Pro: 5523

15,384 2.38

PPI InBioMap [67, 68] Pro: 11,727 175,298 Pro: 5915 69,082 5.50

STRING v11.5 [69, 70] Pro: 14,173 178,896 Pro: 8234 79,670 6.78

BioGRID v4.4.214 [71, 72] Pro: 23,096 111,249 Pro: 6530 33,560 4.0

HuRI [73, 74] Pro: 8275 52,569 Pro: 5073 23,637 3.18

DTI DrugBank v5.0 [75, 76] / / Drug: 5994
Pro: 3502

16,598 2.595

DrugCentral [77, 78] / / Drug: 1427
Pro: 1106

9477 2.38

Table 2  Transductive model evaluation based on training 
dataset with negative samples generated by random sampling. 
The three values separated by double vertical bars are AUROC, 
Spearman coefficient correlation (ρ) between the degree of 
positive samples and their predicted interaction probability, 
and that between the degree of negative samples and their 
predicted interaction probability. Results represent mean of 
n = 15 independent runs

Noise-RF Seq-RF Seq-Deep

LPI NPInter4.0 0.993|0.912|0.170 0.993|0.826|0.144 0.994|0.576|0.333

RAIDv2.0 0.997|0.859|0.416 0.995|0.772|0.247 0.995|0.861|0.095

PPI InBioMap 0.930|0.867|0.825 0.936|0.845|0.758 0.971|0.621|− 0.003

STRING 0.844|0.935|0.865 0.862|0.911|0.734 0.935|0.761|0.093

BioGRID 0.815|0.738|0.538 0.857|0.819|0.662 0.874|0.739|0.411

HuRI 0.865|0.716|0.579 0.892|0.747|0.649 0.904|0.618|0.339

DTI DrugBank 0.808|0.742|0.599 0.888|0.765|0.497 0.894|0.674|0.346

DrugCentral 0.864|0.845|0.667 0.920|0.865|0.454 0.934|0.738|0.223
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overlapping molecular components between test and 
training sets), collectively referred to as inductive eval-
uation. We comparatively assessed the ML models on 
C1, C2, and C3 testing set to gauge their adaptability. 
As shown in Fig. 2b (detailed values provided in Addi-
tional file 10: Table S1), the inductive capabilities of ML 
models for the three tasks declined substantially. Model 
performance progressively diminished from the C1 set 
to the C2 set and further to the C3 set. The AUC of the 
Noise-RF model on C3 approximated random guessing, 

indicating that the model was not influenced by the 
network structure. Additionally, performance on the 
C3 dataset reflected the true generalization capability 
of Seq-RF and Seq-Deep.

When comparing the performance of ML models on 
C1, C2, and C3 testing sets, we can deduce that the 
training of these models is primarily influenced by the 
implicit degree distribution of the network rather than 
the molecular representations.

Fig. 2  The ML models capture the degree distribution characteristics of biological networks displaying the scale-free property. a For clarity, 
in this figure, the degree of a pair was computed as the logarithm of the sum of the degrees of the two nodes forming a connection. The violin 
plots depict the distributions of positive and negative training samples for three datasets. The histograms visually represent the relationship 
between the probability and the degree of the samples. These probabilities were obtained by averaging the probabilities of samples sharing 
the same degree (rounded to one decimal place). b Comparison of model performance: three types of ML models were evaluated across eight 
datasets with respect to testing sets C1, C2, and C3 (detailed values provided in Additional file 10: Table S1; results represent mean of n = 15 
independent runs)
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Furthermore, we utilized multiple datasets to solidify 
our conclusions. Additional files present the results from 
five additional datasets (Additional file  5: Fig. S1, Addi-
tional file 6: Fig. S2, Additional file 7: Fig. S3, Additional 
file 8: Fig. S4, Additional file 9: Fig. S5). These results are 
consistent with our analysis. The findings across multiple 
datasets and methods indicate that our observations are 
not confined to a specific model but are generalized to all 
ML models.

Can constrained negative sampling alleviate bias?
In the preceding section, we highlighted that the dispar-
ity in degree distribution between positive and nega-
tive samples can substantially mislead the ML models, 
introducing a pronounced bias. To tackle this issue, a 
straightforward solution involves implementing exclusive 
negative sampling. This strategy strives to align the dis-
tribution of selected negative samples with that of posi-
tive samples, thereby ensuring higher consistency. This 
section delves into whether the distribution-constrained 
negative sampling strategies can mitigate the bias 
acquired by ML models. Specifically, for the training set, 
negative samples are generated using the DDB method 
for model parameters learning, whereas for the test-
ing set, negative samples are randomly sampled to bet-
ter generalize to the target population. Further detailed 
descriptions on this method are provided in Methods.

Evaluation in transductive prediction
As illustrated in the violin plots in Fig. 3a, the DDB sam-
pling strategy ensures that the degree distribution of 
negative samples aligns with that of positive samples. 
Subsequently, the predicted results are depicted in the 
histograms of Fig. 3a. We observe a significant reduction 
in the correlation between predicted scores and sample 
degrees. However, as shown in Table 3, the performance 
of the three baseline ML models also experiences a nota-
ble decline.

Evaluation in inductive prediction
Does the DDB constraint unveil the model’s genuine 
capability to learn interaction relationships from intrinsic 
molecular features? Fig. 3b (detailed values in Additional 
file  11: Table  S2) displays the predictive performances 
of three models on the C1, C2, and C3 datasets. Nota-
bly, for the Noise-RF method, which does not utilize any 
intrinsic molecular features (like sequence information), 
its performance on the C1 and C2 datasets substantially 
decreases, approaching the predictive level of the C3 
dataset. This implies that much of the network topology 
information previously embedded in the training data 
has been eliminated by the DDB constraint. Figure  2b 
presents the experimental results for negative samples 

generated by random sampling, comparing the perfor-
mances of Noise-RF, Seq-RF, and Seq-Deep on the C1, 
C2, and C3 datasets. It is evident that the gap between 
Seq-RF, Seq-Deep, and Noise-RF widens, further dem-
onstrating that the DDB constraint uncovers the mod-
els’ ability to genuinely learn interaction relationships 
from intrinsic molecular features, such as sequence 
information.

In Fig. 4, we observe a general downward trend in the 
predictive performances of the two sequence-based ML 
models across the C1, C2, and C3 datasets after apply-
ing the DDB constraint. This phenomenon can be attrib-
uted to the scale-free nature of biological networks, as 
previously discussed. Specifically, due to the scale-free 
property of most biological networks, interactions tend 
to have higher degrees, causing a significant degree dis-
tribution difference between positive and negative sam-
ples across the entire dataset. In other words, although 
network topology is not an intrinsic molecular feature, 
ML models still tend to learn this information as it helps 
them achieve better results to some extent. Whether 
this is beneficial depends on whether network topology 
is viewed as a feature to be learned or as a confound-
ing factor to be excluded. From our perspective, when 
predicting protein-molecular interactions using strictly 
sequence-based methods, it is more objective to exclude 
the influence of network topology information.

DDB method interacts with network topology 
and functional attributes
In predicting protein-molecular interactions, in addi-
tion to intrinsic molecular features such as sequence and 
structural information, there exists a wealth of additional 
information that can influence negative sample selec-
tion or model training, either directly or indirectly. This 
additional information can be broadly categorized into 
two types: those derived from the topological structure 
of the biomolecular network and those obtained from 
probing the functional characteristics of biomolecules. 
Notably, the degree distribution of samples is informa-
tion sourced from the network’s topology. Similarly, the 
shortest path distance between two nodes is another top-
ological feature. In contrast, subcellular localization and 
gene ontology (GO) similarity of molecules reflect infor-
mation gained from exploring biomolecular functions. 
For detailed calculation methods of subcellular locali-
zation and GO similarity between sample node pairs, 
please refer to Additional file 4: Note S4. These methods, 
namely shortest path distance, subcellular localization, 
and GO similarity, are commonly employed to sample 
negative samples in the ML task of molecular interac-
tion prediction. For instance, when the shortest distance 
between a pair of nodes exceeds a certain threshold, they 
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are considered as a negative sample. This also under-
scores the topology property based on the six degrees 
of separation hypothesis in complex network theory. In 
contrast, functional implications derived from GO anno-
tations and subcellular localization are often leveraged to 
generate negative samples.

Investigating the interplay between the DDB sampling 
method and the sample degree distribution, along with 
other pertinent attributes, offers a further vivid illustra-
tion of the proposed DDB methodology. As depicted in 

Fig. 5a, a robust correlation emerges between the degree 
of a sample and the shortest path distance separating 
two nodes within that sample, whereas neither subcel-
lular localization nor GO similarity among node pairs 
exhibits a clear link with degree distribution. Figure  5b 
elucidates how the DDB method influences the topo-
logical information within the training data via sample 
degree, disrupting the strong correlation between the 
model’s predictions and degree distribution in the test 
set when random negative sampling is employed. This 

Fig. 3  The DDB constraint assists ML models in focusing on molecular interactive patterns rather than network topology. a For clarity 
in presentation, in this figure, the degree of a pair is computed by taking the logarithm of the sum of the degrees of the two nodes forming 
a linkage. The violin plots depict the distributions of positive and negative training samples across three datasets. The histograms visualize 
the relationship between the probability and degree of the samples, where the probabilities are calculated by averaging the probabilities 
of samples with the same degree (rounded to one decimal place). b Comparison of model performance: three types of ML models are evaluated 
across eight datasets with respect to testing sets C1, C2, and C3 (detailed values provided in Additional file 11: Table S2; results represent mean 
of n = 15 independent runs)
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phenomenon is also reflected in the shortest path dis-
tance between sample nodes.

Discussion
Our study brings to light a pivotal challenge in utiliz-
ing ML models for predicting protein-molecular inter-
actions: the impact of network topology on model 
predictions. By examining the degree distribution dispar-
ity between positive and negative samples, we illustrated 
that ML models, particularly those employing random 

negative sampling, frequently learn to predict interac-
tions based on the network structure rather than intrin-
sic molecular features. This introduces a substantial bias 
that distorts the evaluation of these models, especially in 
transductive learning scenarios where test data may over-
lap with training data.

The results of our transductive evaluation confirm 
that models, including simple classifiers like Noise-RF, 
can achieve high predictive performance, but this suc-
cess is predominantly attributed to their reliance on node 

Table 3  Transductive model evaluation based on training dataset with negative samples generated by DDB. The three values divided 
by the two vertical bars relatively are AUROC, Spearman coefficient correlation (ρ) between the positive sample degree and sample 
predicted interactive probability, and ρ between the negative sample degree and sample predicted interactive probability. Results 
represent mean of n = 15 independent runs

Noise-RF Seq-RF Seq-Deep

LPI NPInterv4.0 0.548|− 0.046|0.228 0.624|− 0.048|0.295 0.862|− 0.145|0.102

RAID v2.0 0.764|− 0.284|0.634 0.770|− 0.286|0.603 0.617|− 0.072|− 0.116

PPI InBioMap 0.828|0.077|0.420 0.858|0.144|0.265 0.924|− 0.026|− 0.285

STRING 0.693|0.141|0.542 0.774|0.306|0.259 0.889|0.265|− 0.227

BioGRID 0.689|0.171|0.329 0.743|0.250|0.246 0.767|0.122|− 0.108

HuRI 0.759|0.113|0.261 0.797|0.161|0.240 0.782|0.110|− 0.112

DTI DrugBank 0.494|0.023|0.229 0.825|0.292|0.117 0.821|0.243|− 0.134

DrugCentral 0.622|0.300|0.491 0.852|0.354|0.309 0.859|0.206|− 0.139

Fig. 4  Comparison of predictive performance between ML models trained on DDB and those trained on randomly sampled datasets
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Fig. 5  Analysis of the degree distribution and its correlated features within a test set, generated via random negative sampling for the HURI dataset, 
under a transductive evaluation paradigm. The figure explores the interplay between sample degree and three key pivotal factors: the shortest 
path distance between nodes, subcellular localization of node pairs, and gene ontology (GO) similarity of node pairs. Additionally, it evaluates 
the relationship between predictions made by Seq_AE model on the test set and both degree distribution and shortest path distance, considering 
scenarios where the training set employs either random or DDB-based negative sampling. a Edge Distance_bar_Average Edge Degree illustrates 
the average degree of samples characterized by varying shortest path distances between node pairs within the test set. Sample Subcellular 
Localization by Edge Degree depicts the subcellular localization among node pairs across different degree ranges for both positive and negative 
samples. Sample GO Similarity_bar_Average Edge Degree represents the average degree of samples falling within various GO similarity ranges 
for both positive and negative samples. b Edge Distance_bar_Average Prediction showcases the average Seq_AE prediction values for test samples 
with distinct shortest path distances between node pairs, comparing the impact of random and DDB negative sampling in the training set. Edge 
Degree_bar_Average Prediction displays the average Seq_AE prediction values for positive and negative samples spanning various degree ranges 
in the test set, under both random and DDB sampling strategies employed during training
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degree distribution. The violin plots and histograms in 
Fig. 2a distinctly show that the models exploit the degree 
difference between positive and negative pairs, resulting 
in inflated AUROC values. However, when we adopted 
an inductive evaluation framework (C1, C2, and C3 sets), 
which eliminates the influence of shared nodes between 
the training and test sets, the models’ performance 
dropped significantly—especially on the C3 set, where 
no nodes were seen during training. This decline in per-
formance, particularly for the Noise-RF model, indi-
cates that the model’s predictive capabilities were largely 
driven by the degree of nodes rather than by meaning-
ful protein-molecular interactions. Consequently, this 
underscores the overestimation of model generalization 
ability in previous studies that relied on random negative 
sampling.

The introduction of the DDB sampling method pro-
vides a solution to mitigate this bias. By aligning the 
degree distribution of negative samples with that of posi-
tive samples, we observed a considerable reduction in the 
correlation between predicted scores and node degree. 
This suggests that the DDB sampling method effectively 
removes the confounding influence of network topol-
ogy, revealing the true capability of ML models to learn 
protein-molecular interaction patterns from intrinsic 
features such as sequence information. The experimen-
tal results, particularly in the inductive evaluation (C1, 
C2, C3 sets), show that the performance gap between 
sequence-based models (Seq-RF, Seq-Deep) and the 
topology-based Noise-RF model widens, emphasizing 
that sequence information plays a more significant role 
when degree bias is eliminated.

However, this improvement comes at the expense of 
overall predictive performance. As shown in Table  3, 
the performance of all models, including Seq-RF and 
Seq-Deep, declines after applying the DDB constraint, 
especially in transductive prediction settings. This 
observation implies that, while DDB method effec-
tively reduces bias, it also strips away useful topologi-
cal information that models may leverage to enhance 
performance. Whether this is desirable hinges on the 
application’s goals. For tasks where network topology is 
deemed a valid feature, excluding it may impede perfor-
mance. However, for applications aiming to predict pro-
tein-molecular interactions purely based on molecular 
properties, removing the influence of network topology 
is crucial for obtaining more objective and generalizable 
results.

In light of our findings, several promising avenues 
for future research have emerged. Firstly, integrating 
higher-quality and more comprehensive datasets could 
more effectively capture the intrinsic properties of pro-
tein-molecular interactions, thereby reducing noise and 

enhancing model reliability. Secondly, incorporating 
additional molecular features—such as post-translational 
modifications, binding affinities, or other biochemical 
properties—may provide a more nuanced understanding 
of interaction dynamics. Third, considering the temporal 
dynamics of interactions, including time-resolved data 
and network evolution, could further refine predictions 
and offer insights into the transient nature of these inter-
actions. These future directions may not only have the 
potential to enhance the predictive performance of ML 
models but also to extend the applicability of our pro-
posed DDB sampling strategy.

Conclusions
In this study, we systematically analyzed various ran-
dom negative sampling strategies within the framework 
of inferring biomolecular interactions. Across numerous 
datasets and ML models, we validated and visualized the 
predictive bias on network topology. Through inductive 
evaluation, we uncovered a significant reduction in the 
generative performance of ML models when network 
influences were eliminated.

A notable limitation of this research is the absence of 
a proposed effective method to mitigate the bias issue in 
pair-input ML models, which we intend to explore fur-
ther in our future studies. We anticipate that our finding 
will garner attention within the bioinformatics commu-
nity and contribute positively to the field’s progression. 
When assessing models for linkage prediction, it is 
imperative to meticulously select the evaluation pipeline 
to ensure reliable validation performance. Random nega-
tive sampling can introduce bias into ML models, thereby 
necessitating an independent test set for accurate assess-
ment of model performance.

In conclusion, while ML models have exhibited prom-
ising potential in predicting protein-molecular interac-
tions, their dependence on network topology often leads 
to inflated performance estimates. The DDB sampling 
method offers a straightforward yet effective approach to 
minimize this bias, albeit while also revealing the limita-
tions of current models in learning from intrinsic molec-
ular features. To enhance the accuracy and applicability 
of these models in real-world biological research, the 
development of advanced ML methods that can better 
capture interaction relationships from inherent molecu-
lar features, while circumventing the influence of net-
work topology, will be paramount.

Methods
Datasets
The negative sampling approach was evaluated across 
three distinct types of protein-centric molecular interac-
tion predictions: lncRNA-protein, protein–protein, and 
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drug-target interactions. These categories encompass 
both heterogeneous and homogeneous interaction types, 
ensuring the broad applicability of the approach and 
demonstrating its effectiveness across various protein-
molecular interaction scenarios, regardless of the nature 
or type of interacting molecules. To underscore the gen-
eralizability of our conclusions, multiple datasets were 
utilized for each prediction task.

For lncRNA-protein interactions and protein–pro-
tein interactions, the datasets were refined through 
several steps: initially, only both interacting molecules 
from human were retained. Subsequently, proteins with 
unavailable sequences were excluded. To ensure dataset 
non-redundancy, the CD-HIT tool [79] was employed 
to reduce sequence identity, with a cutoff value of 0.3 
for protein–protein interactions and 0.8 for lncRNA-
protein interactions. For drug-target interactions, two 
datasets sourced from DrugBank and DrugCentral were 
utilized, which were further processed by KG-MTL [42]. 
A detailed description of all eight datasets is provided in 
Additional file 2: Note S2 [63–82].

Negative sampling strategy
The positive dataset is constructed by utilizing all inter-
active pairs within each dataset. Equally important for 
training and validating ML models is the inclusion of 
high-quality negative data, which consists of non-inter-
active pairs. However, acquiring such data is challenging 
due to its scarcity. In the context of ML for predicting 
protein-molecular interactions, selecting a designated 
number of negative samples from the complementary 
network of the real network is a crucial procedure.

Random sampling
This method involves randomly selecting two nodes from 
the candidate node set. If the selected pair of nodes does 
not constitute a validated pair, it is considered as a poten-
tial candidate. The number of randomly sampled negative 
examples is matched to the count of positive examples.

Degree distribution balanced (DDB) sampling
We proposed the DDB sampling strategy to select a 
negative set with a degree distribution similar to that 
of the positive set. In this strategy, the pair degree is 
defined as the sum of the degrees of the two nodes in 
the pair. The core idea is to generate negative samples 
by selecting pairs of nodes whose combined degree 
closely matches the combined degree of the positive 
(real) pairs, thereby preserving the overall degree dis-
tribution in the negative set.

During the sampling process, we utilize a two-step 
approach to identify suitable negative samples:

Initial matching: For each positive pair, we first 
search for a non-existing edge in the set of nega-
tive candidates with the same degree sum as the 
positive pair. If a suitable negative pair is found, it is 
added to the negative set.
Adaptive search: If no suitable negative pair is 
found with the exact same degree sum, the search 
continues in a “neighboring degree” approach. Spe-
cifically, the algorithm gradually expands the search 
by checking degree sums that are slightly higher 
or lower than the current pair’s degree sum. This 
adaptive search continues until a suitable negative 
pair is found or the search range is exhausted.

The negative sample selection process is designed to 
be efficient. The precomputed degree distribution is 
randomly shuffled to ensure diversity in the sampling 
process. If an exact match is not available, the search 
for a matching negative pair is adaptive, exploring both 
the left (lower degree sum) and right (higher degree 
sum) neighbors in the degree distribution. The number 
of negative pairs sampled is matched to the number of 
positive examples to maintain a 1:1 ratio between posi-
tive and negative samples.

Machine learning models
Figure  1b depicts the core structure of the pair-input 
ML model. Regardless of the molecule encoding uti-
lized in the preceding stages, it is crucial to concatenate 
the features of the pair-wise molecules prior to input-
ting them into a decision-making classifier. To substan-
tiate our conclusion, we evaluated three ML models: (i) 
Noise-RF, where molecules are represented by random 
Gaussian noise vector, and these noise vectors, along-
side network interactions, are learned by a random 
forest classifier. (ii) Seq-RF, combining handcrafted 
molecular feature extraction with traditional classi-
fier-based models, akin to those utilized in previous 
studies [12, 19, 83, 84]; (iii) Seq-Deep (deep learning), 
integrating auto-encoder feature extraction with neural 
network-based decision models, as described in earlier 
works [22, 26, 28, 30, 31, 33, 35, 41, 44, 85]. The Noise-
RF model serves to assess the influence of distribution 
discrepancies on ML models.

Noise‑RF
The feature vectors of molecules are initialized with 
Gaussian noise. The length of each type of molecule’s 
vector is consistent with that of the subsequent Seq-RF 
model. Noise-RF utilizes the random forest as the deci-
sion model.
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Seq‑RF
Initially, we extracted handcrafted molecular features for 
three types of molecules. For proteins, protein sequences 
are represented by reduced amino acid sets [5], and the 
protein’s feature vector is created by normalizing the 
counts of each possible conjoint triad, resulting in a 
vector length of 343. For LncRNA, normalized 4-mer 
frequencies are computed from the RNA sequences, 
yielding a vector length of 256. Drugs are encoded using 
the MinHashed Atom Pair fingerprint [86] with a radius 
of 2 and 128 output dimensions.

For a pair of molecules, the two encoded vectors are 
concatenated into one vector for representing the pair. 
Based on the molecular representation described, the 
concatenated vector dimensions for the three tasks are 
686 for protein–protein interactions, 599 for lncRNA-
protein interactions, and 471 for drug-target interactions. 
Subsequently, the link prediction task is transformed 
into a conventional classification task, and we applied 
the random forest classifier with 500 trees for binary 
classification.

Seq‑Deep
The Seq-Deep approach comprises two channels, each 
utilizing a neural network for molecular auto-encoding. 
The auto-encoded features from both channels are con-
catenated and fed into a multi-layer perceptron for the 
final decision. To capture the sequence information of 
proteins and lncRNAs, we employed a 1-dimensional 
convolutional neural network (CNN). This CNN mod-
ule learns representations of each residue or base in the 
sequence, followed by a max-pooling readout function 
to obtain the overall representation of the protein or 
lncRNA sequence. For drugs, we utilized a graph convo-
lutional network (GCN) to encode the structural infor-
mation represented by the drug’s SMILES notation. After 
the GCN, a max-pooling readout function was applied to 
derive the representation of the drug’s molecular graph. 
A more extensive and detailed explanation of the Seq-
Deep method can be found in Additional file 3: Note S3.

Prediction validations
Transductive validation
In transductive validation, the validation set may poten-
tially contain common nodes with the training dataset. 
This method involves randomly selecting a subset of 
the experimental interactive pairs to form the valida-
tion dataset. To demonstrate the impact of the degree 
distribution disparity between positive and negative 
samplings on ML models, we adopted two strategies for 
generating negative samples for the training dataset. The 

first strategy randomly pairs nodes from the training 
set to select negative samples, while the second strategy 
employs the DDB strategy for sampling negative samples.

For the validation dataset, negative samples were cho-
sen by randomly pairing nodes from the validation set, 
regardless of the strategies used for the training dataset. 
This approach facilitates a comparison of predictive out-
comes from models trained on both degree-biased and 
non-biased training datasets.

Inductive validation
To comparatively assess the generative capabilities of ML 
models trained on datasets using negative sampling and 
DDB negative sampling strategies, we evaluated their 
predictive performance on distinct classes of test pairs. 
Following the approach proposed by Park and Marcotte 
[9], we utilized Kernighan–Lin algorithm [87] to divide 
the molecular network into two separate sub-networks 
with no shared components. The intra-links within each 
sub-network were categorized as C1 and C3, respectively, 
while the links connecting the two sub-networks were 
categorized as C2. We trained the ML models using C1 
and subsequently reported their predictive performance 
on the C2 and C3 datasets. Consequently, the C2 dataset 
comprises test pairs that share only one protein with the 
training set, whereas the C3 dataset consists of test pairs 
that share no proteins with the training set.
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