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Abstract 

Background Circular RNAs (circRNAs) and microRNAs (miRNAs) interactions have essential implications in various 
biological processes and diseases. Computational science approaches have emerged as powerful tools for study-
ing and predicting these intricate molecular interactions, garnering considerable attention. Current methods face 
two significant limitations: the lack of precise interpretable models and insufficient representation of homogeneous 
and heterogeneous molecules.

Results We propose a novel method, MFERL, that addresses both limitations through multi-scale representation 
learning and an explainable fine-grained model for predicting circRNA-miRNA interactions (CMI). MFERL learns multi-
scale representations by aggregating homogeneous node features and interacting with heterogeneous node fea-
tures, as well as through novel dual-convolution attention mechanisms and contrastive learning to enhance features.

Conclusions We utilize a manifold-based method to examine model performance in detail, revealing that MFERL 
exhibits robust generalization, robustness, and interpretability. Extensive experiments show that MFERL outperforms 
state-of-the-art models and offers a promising direction for understanding CMI intrinsic mechanisms.
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Background
An increasing number of studies have demonstrated 
that circRNAs and miRNAs interact through the com-
peting endogenous RNA (ceRNA) network mechanism 
and exert their respective miRNA sponge functions 
through competition [1–6]. As research on circRNAs 

and miRNAs has advanced, a growing number of bio-
logical experiments have validated their interactions. For 
instance, Song et  al. discovered that FOXO3a directly 
induced the expression of miR-29b-2 and miR-338 in 
breast cancer, suggesting their potential as therapeu-
tic targets for this disease [7]. Zhou et al. found that the 
presence of miR-130a-5p in CircVAPA could enhance the 
migration and invasion capabilities of breast cancer cells 
[8].

The identification of circRNA-miRNA interaction 
(CMI) through traditional biological experiments is costly 
and time-consuming [9–11]. However, with the improve-
ment of algorithms and the expansion of datasets, com-
putational methods have emerged as a faster and more 
efficient approach for predicting CMI. Recently, many 
models for predicting cMI have been proposed [12–15]. 
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Currently, computational approaches for CMI prediction 
can be categorized into three main groups.

The first category consists of traditional machine learn-
ing methods that utilize principles of matrix comple-
tion. Qian et  al. proposed a computational framework, 
CMIVGSD [16], for predicting CMI by employing a sin-
gular value decomposition algorithm to extract linear 
features from matrices and using a Light-GBM classifier 
for prediction. Lan et al. introduced the NECMA model 
[17], which predicts CMI through inner product and 
neighborhood regularization logic matrix factorization. 
Yao et al. proposed the IIMCCMA model [18], which uti-
lizes NetMF to extract latent feature vector representa-
tions based on similarity, followed by an inductive matrix 
completion algorithm to identify potential CMI. These 
methods primarily rely on known association data for 
feature extraction and prediction but overlook essential 
RNA sequence information, potentially compromising 
both prediction accuracy and comprehensiveness. The 
second category is based on the principle of ensemble 
learning. Qian et  al. proposed a computational model 
called CMASG, which utilizes graph neural networks 
and singular value decomposition for CMI prediction 
[19]. In parallel, Ma et al. introduced a novel deep learn-
ing algorithm for CMI prediction that integrates Node-
2vec, graph attention networks, a conditional random 
field layer, and inductive matrix completion [20]. Guo 
et  al. presented a new model called BGF-CMAP that 
combines gradient boosting decision trees with natural 
language processing and graph embedding techniques 
to infer potential CMI [21]. While some models employ 
natural language processing to extract RNA sequence 
features, others derive network features for prediction; 
however, they neglect the aggregation of neighbor infor-
mation by only aggregating information within the net-
work constructed from known interactions, ignoring 
the similarity between nodes of the same type. The third 
category is based on deep learning methods that utilize 
neural networks to learn node features. Guo et  al. pro-
posed a model called WSCD, which extracts attribute 
features from circRNAs (miRNAs) sequences and behav-
ior features from CMA networks [22]. In the same year, 
Yu et al. introduced a computational model (SGCNCMI) 
that identifies circRNA-miRNA interactions by integrat-
ing multimodal information with graph convolutional 
networks [23]. The JSNDCMI model developed by Wang 
et al. integrates functional similarity and local topological 
features of nodes, strengthening feature representation 
with a denoising autoencoder [24]. The CA-CMA model 
introduced combines natural language features with 
interaction features, fine-tuning network parameters 
using labeled samples, and predicting CMI with a deep 

neural network classifier [25]. However, these methods 
have certain limitations: during feature fusion, they may 
encounter feature redundancy or loss while aggregating 
neighborhood information, they often only aggregate 
either heterogeneous or homogeneous neighbor infor-
mation without considering the interactive learning of 
heterogeneous information.

In summary, the existing CMI prediction methods suf-
fer from several limitations: (i) insufficient consideration 
of feature information and neglect of the importance of 
different features; (ii) sole reliance on association net-
work features without aggregating homogeneous neigh-
bor information; (iii) lack of addressing heterogeneous 
information interaction; (iv) potential redundancy or 
loss due to feature aggregation. To address these issues, 
we propose MFERL, a method that utilizes explainable 
multi-scale features for precise circRNA-miRNA interac-
tion prediction. Specifically, MFERL offers the following 
advantages:

• To account for the diverse feature information of 
RNA sequences, we extracted multiple feature rep-
resentations of RNA from different fine-grained 
sequence dimensions. Simultaneously, to adjust and 
balance the various features, we applied enhanced 
learning to the different features. During the process 
of feature aggregation learning, we separately consid-
ered homogeneous information aggregation as well 
as heterogeneous information interactive learning.

• To reduce the likelihood of feature redundancy or 
loss, we employed contrastive learning to optimize 
the feature vector representations, thereby obtain-
ing high-quality feature embeddings. Ultimately, to 
enhance the information contained within node fea-
tures, we concatenated the learned and aggregated 
feature representations from various perspectives as 
the ultimate node embeddings for prediction.

• To validate the interpretability of the model, we used 
t-SNE [26] and MDA [27] for visualization analysis. 
Simultaneously, to investigate the robustness of the 
model, we conducted experiments under different 
positive-to-negative sample ratios.

Results
Model design and training
The overall architecture of the proposed method is illus-
trated in Fig.  1. MFERL consists of three parts. Part I: 
multi-scale features extraction of miRNAs/circRNAs. 
Part II: feature learning of miRNAs/circRNAs. Feature 
aggregation and enhancement learning are performed on 
these five types of features from different perspectives: 
(1) homogeneous information aggregation: the similarity 
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matrix is thresholded to construct a homogeneous graph, 
and GCN is applied to aggregate homogeneous neighbor 
information for the other four features on this graph. (2) 
Heterogeneous information interaction learning: the five 
features are concatenated and stretched as RNA feature 
representations, which are then input into a dual-atten-
tion module for heterogeneous information interaction 
learning. (3) Enhanced learning between features: the 
five features are fed into a dual-convolutional attention 
module to enhance learning across the different types 
of features. Part III: model optimization and prediction. 
To compare the high-dimensional embeddings of RNA 
after processing by the model, the embeddings obtained 
from the three different perspectives are combined with 
the original features, and contrastive learning is applied 
using a contrastive loss function to optimize the vector 
representations. Finally, the three sets of feature vectors 
are concatenated to form the final feature embedding 
used for prediction.

The main aim of our study was to develop a predic-
tor for circRNA-miRNA interaction scores. Our model 
evaluation was conducted using three datasets, where 
known CMI were treated as positive samples, labeled as 
1, and unverified CMI were considered negative sam-
ples, labeled as 0. Then, from the samples labeled as 0, we 

randomly selected an equal number of negative samples 
to match the number of positive samples, ensuring sam-
ple balance. In the 5-fold CV, all positive samples and the 
selected negative samples were randomly divided into 
five equal parts, with four parts used for training and the 
remaining part used for testing. To assess the model’s 
performance, we utilized six common metrics, includ-
ing AUC (area under the receiver operating characteris-
tic curve), AUPR (area under the precision-recall curve), 
accuracy, recall, precision, and F1_score. The AUC and 
AUPR results for Dataset1 in the 5-fold CV are shown in 
Fig. 2A and B, respectively.

In addition, to verify the universality of the model, we 
also conducted independent tests on three datasets, as 
shown in Section 1 and Table S1 in Additional file 1. We 
also conducted five-fold cross-validation experiments on 
circRNAs and miRNAs on the three datasets, as shown 
in Section 2 and Figs. S1, S2, and Table S2 in Additional 
file 1 [28, 29].

In MFERL, there are three significant hyperparame-
ters considered: di (embedding dimension), lr (learning 
rate), and τ  (temperature hyperparameter in contras-
tive learning). A series of experiments were conducted 
on Dataset1 using different hyperparameters to evalu-
ate the sensitivity of the model to these parameters. 

Fig. 1 The architecture of MFERL. Part I: multi-scale features extraction of miRNAs/circRNAs; part II: feature learning of miRNAs/circRNAs; Part III: 
model optimization and prediction
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We held other parameters constant while varying the 
embedding dimension di(32, 64, 128, 256). Using 5-fold 
cross-validation, we measured and visualized the AUC, 
AUPR, F1_score, accuracy, recall, and precision, pre-
senting the results in a heatmap as shown in Fig.  4A. 
Notably, we observed an improvement in MFERL’s per-
formance as the embedding dimension increased, with 
the best AUC and AUPR observed at a dimension of 
128. However, the performance started to decline when 
the dimension reached 256, leading us to select 128 as 
the optimal value. Next, by adjusting the learning rate, 
we aimed to optimize the model’s predictive capabil-
ity. Therefore, we varied the learning rate lr(0.0001, 
0.001, 0.01, 0.1) and conducted 5-fold cross-validation. 
As shown in Fig.  4B, the optimal performance was 
achieved when the learning rate was set to 0.01. To 
obtain high-quality feature embeddings, we introduced 
contrastive learning to optimize feature vector repre-
sentations. Consequently, the temperature parameter 
τ in contrastive learning was treated as a hyperparam-
eter, with values ranging from 0.01 to 0.15. As depicted 
in Fig.  4C, the best performance was achieved when τ 
was set to 0.1.

The proposed MFERL outperforms the state‑of‑the‑art 
methods
To validate the performance of our model, we compared 
MFERL with the following methods across three data-
sets: BGF-CMAP [21], CA-CMA [25], GCNCMI [12], 
SPBCMI [30], NECMA [17], SPGNN [31], GCNA-MDA 
[32], NGMDA [33], MGCAT [34], and AMHMDA [35]. 
All comparisons were conducted under identical experi-
mental settings, with the parameters for the comparative 
methods set to the optimal values recommended in their 
respective original studies.

Figure 3 illustrates the ROC and PR curves for the ten 
comparative methods and MFERL, evaluated through 
5-fold CV on three datasets. Additionally, we employed 
Cohen’s value to assess the statistical differences in AUC 
and AUPR between MFERL and the other methods across 
the three datasets. A Cohen’s value greater than 0.8 indi-
cates a substantial difference. The results in Fig. 2C dem-
onstrate that the Cohen’s value for MFERL compared to 
other methods exceeds 0.8, leading to the conclusion that 
there is a significant difference between MFERL and the 
other ten methods across the different datasets.

Fig. 2 Performance and statistical analysis of the MFERL model. A and B ROC and PR curves of MFERL on Dataset1 under 5-fold CV. C Statistical 
significance analysis of Cohen’s value between MFERL and 10 methods across three datasets. D MFERL outperforms other methods (the paired 
t-test, P < 0.0001)
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Table  1 comprehensively summarizes our experimen-
tal analysis, highlighting the superior performance of our 
proposed model, MFERL, across six key evaluation met-
rics. Notably, on Dataset1, MFERL achieved impressive 

performance metrics, with an AUC of 0.9669, AUPR of 
0.9629, F1_score of 0.9177, accuracy of 0.9170, recall of 
0.9262, and precision of 0.9094. These values show a sig-
nificant improvement over the corresponding metrics 

Fig. 3 ROC and PR curves for eleven methods under 5-fold CV. a and b are on Dataset1; c and d are on Dataset2; e and f are on Dataset3

Fig. 4 Evaluation indicators for parameter sensitivity analysis and ablation experiments. A, B, and C The performance of 5-fold CV is compared 
on Dataset1 with different parameter values. D, E, and F Ablation experiments of MFERL on Dataset1, Dataset2, and Dataset3
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achieved by the second-best method, exceeding them 
by 1.82%, 1.69%, 4.01%, 3.97%, 2.22%, and 0.56%, respec-
tively. On Dataset2 and Dataset3, MFERL also con-
sistently ranked either first or second in performance. 
Additionally, we evaluated MFERL’s performance against 
the ten comparative methods on Dataset1 using ten 
rounds of 5-fold CV, collecting 50 AUC values for each 
method. The paired t-test was then conducted to statis-
tically compare the AUC and AUPR values of MFERL 
against those of the ten comparative methods, highlight-
ing the significant differences between MFERL and the 
other approaches. As shown in Fig. 2D, the results clearly 

indicate the superior effectiveness of our method com-
pared to the others.

Ablation study of the feature learning
To verify the importance of feature learning from dif-
ferent perspectives in MFERL, we conducted compara-
tive experiments on five variant models using Dataset1 
in this section. The five variant models are introduced as 
follows:

• “w/o cl” removed the contrastive learning compo-
nent from the original model.

Table 1 Performance of eleven methods in terms of AUC, AUPR, F1_score, accuracy, recall, and precision under 5-fold CV on Dataset1, 
Dataset2, and Dataset3

Best and second-best results are bolded and underlined

Datasets Methods AUC AUPR F1_score Accuracy Recall Precision

Dataset1 BGF-CMAP 0.9196±0.0033 0.9218±0.0028 0.8432±0.0059 0.8418±0.0058 0.8507±0.0162 0.8363±0.0127

GCNA-MDA 0.7508±0.0088 0.7748±0.0072 0.7258±0.0061 0.7156±0.0108 0.7525±0.0121 0.7014±0.0171

SPBCMI 0.9147±0.0054 0.9065±0.0054 0.8520±0.0050 0.8432±0.0092 0.8929±0.0155 0.8153±0.0207

SPGNN 0.8986±0.0093 0.8882±0.0134 0.8265±0.0113 0.8156±0.0136 0.8776±0.0142 0.7815±0.0221

NECMA 0.9487±0.0034 0.9460±0.0042 0.8776±0.0065 0.8755±0.0074 0.8930±0.0105 0.8630±0.0134

AMHMDA 0.9137±0.0116 0.8919±0.0146 0.8568±0.0081 0.8513±0.0090 0.8895±0.0226 0.8271±0.0143

MGCAT 0.9349±0.0066 0.9430±0.0050 0.8731±0.0077 0.8773±0.0068 0.8447±0.0185 0.9038±0.0154

CA-CMA 0.8651±0.0375 0.8532±0.0414 0.8014±0.0277 0.7845±0.0354 0.8659±0.0398 0.7487±0.0564

GCNCMI 0.9063±0.0018 0.9162±0.0023 0.8214±0.0022 0.8273±0.0034 0.7941±0.0131 0.8510±0.0162

NGMDA 0.9426±0.0044 0.9386±0.0050 0.8726±0.0055 0.8680±0.0077 0.9040±0.0163 0.8438±0.0176

Ours(MFERL) 0.9669 ±0.0040 0.9629 ±0.0050 0.9177 ±0.0063 0.9170 ±0.0055 0.9262 ±0.0055 0.9094 ±0.0110

Dataset2 BGF-CMAP 0.9135± 0.0017 0.9217±0.0012 0.8378±0.0016 0.8365±0.0046 0.8440±0.0152 0.8323±0.0173

GCNA-MDA 0.7423± 0.0051 0.7706±0.0099 0.7245±0.0018 0.7184±0.0068 0.7404±0.0210 0.7102±0.0178

SPBCMI 0.9142± 0.0058 0.9049±0.0063 0.8490±0.0066 0.8380±0.0097 0.9087 ±0.0200 0.7975±0.0206

SPGNN 0.8919±0.0043 0.8915±0.0029 0.8200±0.0027 0.8122±0.0041 0.8555±0.0214 0.7879±0.0139

NECMA 0.9375±0.0029 0.9416±0.0028 0.8741±0.0037 0.8720±0.0037 0.8886±0.0102 0.8601±0.0066

AMHMDA 0.9220±0.0127 0.9083±0.0149 0.8672±0.0142 0.8618±0.0148 0.9024±0.0112 0.8349±0.0250

MGCAT 0.9236±0.0040 0.9352±0.0031 0.8549±0.0040 0.8610±0.0034 0.8192±0.0102 0.8941±0.0044

CA-CMA 0.8931±0.0168 0.8920±0.0136 0.8236±0.0238 0.8201±0.0234 0.8396±0.0267 0.8085±0.0271

GCNCMI 0.8963±0.0056 0.9085±0.0053 0.8096±0.0071 0.8117±0.0067 0.8012±0.0224 0.8188±0.0155

NGMDA 0.9365±0.0048 0.9343±0.0054 0.8631±0.0057 0.8610±0.0069 0.8765±0.0160 0.8508±0.0195

Ours(MFERL) 0.9596 ±0.0028 0.9610 ±0.0041 0.9074 ±0.0065 0.9084 ±0.0054 0.8992±0.0053 0.9159 ±0.0105

Dataset3 BGF-CMAP 0.9070± 0.0020 0.9113±0.0029 0.8308±0.0024 0.8269±0.0025 0.8499±0.0096 0.8127±0.0071

GCNA-MDA 0.7647± 0.0102 0.7776±0.0118 0.7302±0.0078 0.7098±0.0116 0.7853±0.0162 0.6828±0.0156

SPBCMI 0.8778±0.0038 0.8780±0.0038 0.8025±0.0052 0.7891±0.0106 0.8572±0.0182 0.7551±0.0222

SPGNN 0.9011±0.0034 0.8955±0.0035 0.8292±0.0028 0.8173±0.0051 0.8869±0.0185 0.7791±0.0156

NECMA 0.9390±0.0040 0.9416±0.0040 0.8694±0.0057 0.8674±0.0048 0.8835±0.0141 0.8560±0.0070

AMHMDA 0.9338±0.0073 0.9225±0.0083 0.8701±0.0113 0.8630±0.0122 0.9183 ±0.0100 0.8268±0.0178

MGCAT 0.9401±0.0028 0.9464 ±0.0020 0.8746±0.0027 0.8764±0.0032 0.8623±0.0137 0.8876 ±0.0138

CA-CMA 0.8968±0.0214 0.8888±0.0226 0.8243±0.0241 0.8183±0.0250 0.8527±0.0267 0.7983±0.0251

GCNCMI 0.8881±0.0015 0.8959±0.0028 0.8098±0.0040 0.8088±0.0028 0.8146±0.0114 0.8053±0.0061

NGMDA 0.9132±0.0039 0.9117±0.0017 0.8408±0.0037 0.8327±0.0063 0.8830±0.0182 0.8029±0.0144

Ours(MFERL) 0.9456 ±0.0034 0.9443±0.0030 0.8778 ±0.0056 0.8789 ±0.0059 0.8775±0.0083 0.8781±0.0102
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• “w/o homo” indicated that the model did not con-
sider the aggregation of homogeneous neighbor 
information.

• “w/o mcam” removed the multi-feature enhance-
ment learning module from the original model.

• “w/o heter” indicated that the model lacked the het-
erogeneous information interaction learning module.

• “change_homo” represented the model where 
homogeneous information aggregation was per-
formed by first fusing and then aggregating homoge-
neous neighbor information.

Figure  4D, E, and F present the comparison of evalu-
ation metrics between the original model and the five 
variant models on three datasets. It is noteworthy that we 
found the multi-feature enhancement learning module 
had a significant impact on the model, highlighting the 
need to consider the interactions between different fea-
tures when utilizing multi-scale features to enrich node 
information.

Explore the impact of the ratio of positive and negative 
samples in training data on model performance
In comparative experiments conducted on three datasets, 
it was found that MFERL performed well across all three, 
demonstrating the model’s robustness and generaliza-
tion capability. In real-world scenarios, the high cost of 
biological experiments often results in a limited number 
of verified CMI, leading to an imbalance between posi-
tive and negative samples. To further validate the model’s 
generalization ability and robustness under different pos-
itive-to-negative sample ratios, we conducted 5-fold CV 
experiments on Dataset1 with varying positive-to-nega-
tive sample ratios (1:1, 1:2, 1:5, 1:10). As shown in Table 2, 
the changes in AUC for MFERL were minimal, and the 
accuracy remained above 0.91. Notably, the AUPR, which 
is most sensitive to the positive-to-negative sample ratio, 
remains above 0.87, demonstrating the model’s strong 
generalization capability.

Visualization analysis and explainability
To visually demonstrate the model’s capability in learn-
ing features, we employed t-SNE on Dataset1 to trans-
form the embeddings of circRNA-miRNA pairs learned 

by our model into a two-dimensional space. As shown in 
Fig. 5A, it can be observed that as the number of epochs 
increased, the positive samples (in red) and negative sam-
ples (in blue) were gradually distinguished. When the 
epoch reached 800, the resulting embeddings exhibited 
good intra-class similarity and a clear boundary between 
the classes. This result indicates that the model’s fea-
ture learning is both distinguishable and interpretable, 
thereby demonstrating the effectiveness of MFERL.

Through the ablation experiments conducted in the 
previous section, it was evident that the dual-convolution 
attention module used for multi-feature enhancement 
learning had a significant impact on model performance. 
To further explore the feature enhancement learning 
capability of this module, we conducted a visualization 
experiment using MDA. Specifically, MDA can display 
the arrangement of node features in low-dimensional 
space, where a more continuous color distribution indi-
cates better preservation of the geometric relationships 
within the feature space. Additionally, MDA can ana-
lyze the influence of specific layers on specific behaviors. 
Therefore, we used MDA to analyze the impact of the 
dual-convolution attention module on feature enhance-
ment learning behavior. As shown in Fig.  5B, it can be 
observed that as the training epochs increased, the dis-
tribution of the manifold structure in the visualization 
became more orderly, and the color patterns displayed 
a trend of clustering and gradual transition, while main-
taining a continuous and uniform shape. This indicates 
the effectiveness of the dual-convolution attention mod-
ule in feature enhancement learning, further demonstrat-
ing that the MFERL model possesses a certain degree of 
interpretability.

Case validation based on experimental results 
in the literature
To evaluate MFERL’s capability in predicting circRNA-
miRNA interaction pairs, we conducted a case study 
based on Dataset1. In this study, we trained the model 
using known interactions and an equal number of nega-
tive samples, then applied the trained model to predict 
unknown CMI. Among the top 20 predictions supported 
by experimental data, 14 CMI pairs were verified, as 
detailed in Table 3. We provide the top 50 case analysis 

Table 2 Comparison of different positive and negative sample ratios during MFERL training

Ratios AUC AUPR F1_score Accuracy Recall Precision

1:1 0.9682 0.9667 0.9191 0.9182 0.9265 0.9119

1:2 0.9710 0.9445 0.8913 0.9265 0.9040 0.8790

1:5 0.9759 0.9117 0.8539 0.9512 0.8543 0.8536

1:10 0.9756 0.8771 0.8148 0.9666 0.8078 0.8219
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and prediction scores in Additional file  1 and show the 
distribution of some prediction scores. For details, see 
Section 3, Table S2, and Fig. S3 in Additional file 1.

The results demonstrate that MFERL has strong identi-
fication performance. It is important to note that unveri-
fied CMI predictions do not necessarily indicate errors. 
Given MFERL’s superior performance in comparative 
experiments and across three datasets, it can be inferred 
that the unverified CMI in this case study likely have a 
high probability of being accurate. Therefore, these pre-
dictions urgently require experimental validation.

Discussion
The growing importance of circRNA-miRNA interac-
tions in disease mechanisms highlights the need for 
accurate and interpretable prediction models. In this 
study, we proposed MFERL, a novel multi-scale feature 
learning framework that integrates homogeneous and 
heterogeneous node learning to improve CMI predic-
tion performance. While MFERL achieved competitive 
results, some challenges and open questions remain.

First, the inherent class imbalance in CMI datasets 
poses a significant challenge. Although MFERL maintains 
robust performance under different negative sampling 

Fig. 5 Visualization analysis and explainability. A t-SNE visualization of circRNA-miRNA pairs embeddings learned at different epochs of MFERL 
training. B Visualization of feature-enhanced learning using MDA in dual-convolutional attention modules

Table 3 The top 20 prediction scores among unknown 
interactions

circRNAs miRNAs Evidence

hsa_circ_0001666 hsa-miR-1184 PMID: 35284630

hsa_circ_0041116 hsa-miR-103a-3p PMID: 27484176

hsa_circ_0000527 hsa-miR-27a-3p PMID: 34823425

hsa_circ_0013871 hsa-miR-3925-3p Unconfirmed

hsa_circ_0021030 hsa-miR-1270 PMID:32107851

hsa_circ_0037997 hsa-miR-762 Unconfirmed

hsa_circ_0022342 hsa-miR-942-5p PMID: 28682884

hsa_circ_0050101 hsa-miR-378a-3p PMID: 37722013

hsa_circ_0041099 hsa-miR-3125 Unconfirmed

hsa_circ_0019687 hsa-miR-647 PMID: 33490086

hsa_circ_0041891 hsa-miR-378a-3p PMID: 35093879

hsa_circ_0008234 hsa-miR-574-5p PMID: 34050132

hsa_circ_0014209 hsa-miR-4685-3p Unconfirmed

hsa_circ_0019689 hsa-miR-212-5p PMID: 37870214

hsa_circ_0041089 hsa-miR-103a-3p PMID: 27484176

hsa_circ_0039186 hsa-miR-1277-5p Unconfirmed

hsa_circ_0032499 hsa-miR-210 PMID: 2607445

hsa_circ_0012069 hsa-miR-378i PMID: 36174034

hsa_circ_0089776 hsa-miR-6769b-5p Unconfirmed

hsa_circ_0068783 hsa-miR-93-5p PMID: 33585208
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ratios, the selection of negative samples remains a criti-
cal factor influencing model accuracy. Further research 
is needed to develop more effective negative sampling 
strategies, potentially incorporating biological priors or 
knowledge-based constraints. Second, the model cur-
rently emphasizes node-level features without fully con-
sidering biological context, such as tissue specificity, 
disease state, or dynamic regulatory environments. These 
factors can significantly impact the behavior and inter-
action patterns of circRNAs and miRNAs. Future work 
should explore integrating this contextual information, 
possibly through the construction of knowledge graphs 
or hypergraphs that capture richer biological relation-
ships. Moreover, although visualization techniques like 
t-SNE and MDA confirm the model’s discriminative 
power, more advanced interpretability techniques could 
be applied to provide deeper insights into the learned 
features and the biological relevance of predictions. Spe-
cifically, while MDA helps visualize the organization of 
learned features and reveals their structural evolution 
during training, this interpretability remains at the com-
putational level. It does not directly explain the biologi-
cal mechanisms behind circRNA-miRNA interactions. 
This limitation stems from our model’s reliance on raw 
sequence data, without integrating explicit biological 
annotations or motif-level supervision. Nonetheless, the 
clustering patterns and gradual transitions observed in 
MDA suggest that the model may implicitly capture bio-
logically relevant signals, such as nucleotide preferences 
or interaction-related patterns. In future work, we aim 
to incorporate attention weight analysis, motif discovery 
techniques, and comparisons with experimentally vali-
dated binding sites to better align computational repre-
sentations with biological meaning. This would further 
support the model’s application in guiding experimental 
validation.

In conclusion, MFERL offers a solid foundation for 
CMI prediction, and with further enhancements—espe-
cially in data quality, context modeling, and sample selec-
tion—it holds strong potential for facilitating biological 
discovery in the era of RNA research.

Conclusions
In recent years, numerous clinical studies have demon-
strated that circRNA-miRNA interaction plays a cru-
cial role in disease development and treatment, drawing 
significant attention from researchers. In this paper, we 
propose a CMI prediction model, MFERL, based on 
multi-scale features learning. The model comprehen-
sively considers features at different scales and employs 
feature learning from various perspectives. Specifically, 
we perform homogeneous node aggregation learning 
and heterogeneous node interaction learning, along with 

enhanced learning of multi-scale features. The results 
show that MFERL significantly outperforms other classic 
methods. Visualization analysis using t-SNE and MDA 
confirms that MFERL offers inter-class distinguishabil-
ity and interpretability in feature learning. Moreover, by 
adjusting the ratio of positive and negative samples dur-
ing training, we demonstrate the model’s strong gener-
alization capability. Case studies further indicate that 
MFERL is a reliable tool for predicting potential CMI, 
providing valuable insights for biological experiments.

Although MFERL achieved superior performance in 
comparative experiments, there are still some limitations. 
For example, the imbalance between positive and nega-
tive samples in the dataset affects the model’s ability to 
accurately select negative samples during training. While 
this imbalance impacts performance to some extent, our 
model still demonstrates strong predictive capability, 
maintaining high precision (PPV) even when the negative 
sample ratio is increased. However, the varying charac-
teristics of different entities in biological networks—such 
as the influence of cell types, disease states, or other 
contextual factors—can affect node feature information. 
Currently, our model primarily considers the features 
of target nodes, without incorporating these contextual 
influences. To address these limitations, we plan to inte-
grate richer biological information (e.g., diseases [36], 
drugs [37, 38], cell types) in future work, and explore the 
construction of a comprehensive knowledge graph or a 
hypergraph to facilitate feature aggregation and improve 
prediction accuracy. Additionally, we will further inves-
tigate strategies for negative sample selection, aiming 
to develop more robust methods for model training in 
imbalanced datasets.

Methods
Datasets
MFERL will be tested on three datasets. Table 4 provides 
a summary of the detailed information for these datasets.

• Dataset1: Circbank [39] is a public database con-
taining five features of circRNAs. Circbank includes 
approximately 140,000 human circRNAs and 1917 
human miRNAs. After removing redundant data, 
we obtained 9589 circRNA-miRNA interaction pairs 
from the Circbank database, involving 2115 circR-
NAs and 821 miRNAs.

Table 4 Specific data of datasets

Datasets circRNAs miRNAs Interactions

Dataset1 2115 821 9589

Dataset2 2346 926 9905

Dataset3 3569 1152 20208
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• Dataset2: CMI-9905 was compiled by Wang et  al. 
[24], consisting of 9905 interaction pairs between 
2346 circRNAs and 926 miRNAs.

• Dataset3: It was obtained from BGF-CMA [21] 
and contains 20,208 experimentally validated CMI, 
involving 3569 circRNAs and 1152 miRNAs.

Overview of MFERL
The overall architecture of the proposed method is illus-
trated in Fig.  1. MFERL consists of three parts. Part I: 
multi-scale features extraction of miRNAs/circRNAs. We 
calculate sequence similarity, statistical features (CTD 
and K-mer), pre-trained distributed features (Doc2 Vec), 
and graph structural features (Role2 Vec) for circRNAs 
and miRNAs. Part II: feature learning of miRNAs/circR-
NAs. Feature aggregation and enhancement learning are 
performed on these five types of features from different 
perspectives. It includes three aspects: aggregation of 
homogeneous neighborhood features of multi-scale fea-
tures, dual-convolutional attention module for enhanced 
learning between multi-scale features, and interactive 
learning of heterogeneous information of miRNAs and 
circRNAs. Part III: model optimization and prediction: 
contrastive learning optimizes vector representation, fea-
ture splicing enriches embedded information, and inner 
product obtains prediction results.

Multi‑scale features extraction
To comprehensively characterize circRNAs and miRNAs, 
we extracted different fine-grained features from multiple 
perspectives. First, considering the previous work related 
to circRNAs [40], the Levenshtein distance method was 
applied to the RNA sequences to calculate the sequence 
similarity among the same type of RNA. Subsequently, 
drawing on existing research on interactions between 
ncRNAs [41], four types of features based on RNA 
sequences were extracted: statistical features (CTD and 
K-mer), pre-trained distributed features (Doc2 Vec), and 
graph structural features (Role2 Vec). The detailed pro-
cess of feature extraction was then described.

Sequence similarity:
The evaluation of similarity between two circRNA 

sequences was based on the Levenshtein distance [42], 
which represents the minimum number of edit opera-
tions required to transform one circRNAs sequence into 
another. The edit operations included not only character 
substitutions but also the insertion and deletion of char-
acters. Consequently, the sequence similarity for circR-
NAs was denoted as xsc , and similarly, for miRNA, it was 
denoted as xsm.

Composition/transition/distribution (CTD) features:

In this study, CTD features were employed to repre-
sent the sequence structural information of RNA. CTD 
features include nucleotide composition, nucleotide 
transition, and nucleotide distribution [43]. Currently, 
CTD features are rarely used for predicting interactions 
between circRNAs and miRNAs. Here, we utilized CTD 
features to supplement the structural information of 
RNA, denoted as xcc and xcm , respectively.

K-mer features of RNA sequences:
K-mer is a widely used RNA sequence descriptor, 

which has been successfully applied in enhancer recogni-
tion [44] and lncRNA prediction [45]. In this study, we 
employed four K-mer features, including 1-mer, 2-mer, 
3-mer, and 4-mer. For circRNAs (miRNAs) sequence, the 
four K-mer features were concatenated into a feature vec-
tor, with the K-mer features represented as xkc  and xkm.

Pre-trained distributed features by Doc2 Vec:
In this study, Doc2 Vec was utilized to obtain the dis-

tributed embeddings [46]. Each RNA sequence was 
treated as a sentence, and Doc2 Vec learned sentence 
representations by combining local context and global 
information. In this context, the distributed features for 
circRNAs (miRNAs) sequence were represented as xdc  
and xdm , respectively.

Graph structural features by Role2 Vec:
Role2 Vec was employed to learn graph structural 

information by utilizing attributed random walks to cap-
ture role-based embeddings. Following the approach 
in [34], the Role2 Vec embedding method was used to 
encode nodes within the interaction graph. Similarly, we 
obtained vector representations for circRNAs, where the 
Role2 Vec features for circRNAs and miRNAs were rep-
resented as xrc and xrm , respectively.

Feature learning of miRNAs/circRNAs
In MFERL, feature learning involved feature aggregation 
and enhancement learning of multi-scale features from 
different perspectives. This section encompassed three 
aspects: aggregation of homogeneous neighborhood fea-
tures of multi-scale features, dual-convolutional atten-
tion module for enhanced learning between multi-scale 
features, and interactive learning of heterogeneous infor-
mation of miRNAs and circRNAs.

Aggregation of homogeneous neighborhood features 
of multi‑scale features
To aggregate different features of similar nodes, we opted 
to use a similarity matrix as a homogeneous graph and 
applied graph convolution to aggregate the features 
of homogeneous neighbors. Unlike traditional feature 
aggregation methods, we performed feature aggrega-
tion separately on the homogeneous graph for each fea-
ture type, and then fused the aggregated features by 
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concatenation and projection. Taking miRNAs as an 
example: first, we constructed a homogeneous graph Gm 
by applying a threshold on the similarity matrix xsm (for 
fairness, we set the threshold at 0.5); then, on graph Gm , 
we used graph convolution to aggregate the CTD fea-
tures, K-mer features, Doc2 Vec features, and Role2 Vec 
features (as the similarity matrix has already been used 
to construct the homogeneous graph, sequence similar-
ity features were not considered during the aggregation 
of homogeneous neighbor information). The feature 
aggregation process for CTD features, as an example, is 
detailed as follows:

here, A is the adjacency matrix of graph Gm , X0
ctd = xmc  , 

Ã = A+ I represents the adjacency matrix A of the node 
plus self-loop, and D̃ is the degree matrix of Ã , which is a 
symmetric matrix. Here, we set the number of layers l of 
GCN to 1 by default. Similarly, we can obtain homogene-
ous information features Xkmer

m  , Xdoc
m  , and Xrole

m  based on 
k-mer, doc2vec, and role2vec. Finally, the different homo-
geneous information features are spliced and projected 
as the homogeneous features of miRNAs and embedded 
into Xhomo

m  . Similarly, the homogeneous features of circR-
NAs can be embedded into Xhomo

c .

(1)X
(l+1)
ctd = fconv Xl

ctd ,A

(2)fconv

(

Xl
ctd ,A

)

= σ

(

D̃−
1
2 ÃD̃−

1
2Xl

ctdW
l
ctd

)

Dual‑convolutional attention module for enhanced learning 
between multi‑scale features
To adjust and balance the weights of different features, 
we adopted a dual-convolution attention mechanism for 
enhanced learning of the various features. Taking miR-
NAs as an example, we first used the five-layer embed-
ding Xm =

{

xkm, x
c
m, x

d
m, x

r
m, x

s
m

}

 as the input to the 
channel convolution attention block ( Xm ∈ R

Cm×Nm×Dm ). 
This process sequentially produced the channel atten-
tion ∂mc ∈ R

5×1×1 and spatial attention ∂mc ∈ R
5×Nm×Dm , 

where Cm represents the number of channels or embed-
ding layers (default is 5), Nm is the number of miRNAs 
nodes, and Dm is the embedding dimension. The overall 
attention process can be summarized as follows:

In this context, ⊗ denotes element-wise multiplication. 
During the multiplication process, the attention values 
are broadcasted accordingly, where Xmcam

m  represents 
the embeddings for miRNAs. Similarly, the embeddings 
for circRNAs can be obtained as Xmcam

c  . The detailed 
descriptions of the channel attention and spatial atten-
tion modules are provided below, as shown in Fig. 6.

Channel attention module:
We utilized five different features as five layers of fea-

ture embeddings input into the channel attention block. 

(3)X ′

m = ∂mc ⊗ Xm

(4)Xmcam
m = ∂ms ⊗ X ′

m

Fig. 6 Dual-convolutional attention module (miRNAs as an example)
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Each feature embedding layer was considered as a dis-
tinct representation of miRNAs. To capture the influ-
ence of different layers on the overall embedding, we 
used convolutional layers to compress and restore the 
input embeddings. Additionally, to aggregate attention 
information, both average pooling and max pooling were 
employed to achieve more accurate channel attention. 
The process of the channel attention module is repre-
sented as follows:

here, σ represents the sigmoid function, 
fchannel(·) = Conv2d(ReLu(Conv2d(·))).

Spatial attention module:
We generated a spatial attention map by leveraging the 

spatial relationships within the feature embeddings. The 
spatial attention block aimed to enhance channel atten-
tion by focusing more on specific parts of the information 
within the channels. To compute the spatial attention, 
average pooling and max pooling were applied along the 
channel axis to the input, and the results were concate-
nated. A convolutional layer was then applied to generate 
the spatial attention, which represents the regions where 
attention should be enhanced or diminished. The process 
of the spatial attention block is represented as follows:

here, σ represents the sigmoid function and  fspatial rep-
resents a convolution operation with a filter size of 3× 3.

Interactive learning of heterogeneous information of miRNAs 
and circRNAs
To enhance the modeling of the complex relationships 
between the feature representations of miRNAs and cir-
cRNAs, we employed a bilinear interaction mechanism 
for heterogeneous information. This approach aids in 
extracting the joint representations of miRNAs and cir-
cRNAs. Specifically, we fused the five types of features as 
the miRNAs representation hm and the circRNAs repre-
sentation hc to construct a bilinear interaction mapping, 
resulting in the interaction feature matrix Z ∈ R

Nm×Nc . 
The process is represented as follows:

here, Wm ∈ R
Nm×d and Wc ∈ R

Nc×d represent the learn-
able weight matrices for miRNAs and circRNAs, respec-
tively. norm(·) represents the weight normalization 
operation. ⊗ represents the outer product, which is used 
to calculate the product of two vectors. W1 is the weight 
matrix of the linear projection; b1 is the bias term.

(5)∂mc = σ

(

fchannel
(

Xmax
m

)

+ fchannel

(

X
avg
m

))

(6)∂ms = σ

(

fspatial

([

X ′

mAvg ;X
′

mMax

]))

(7)α = norm

(

W1

(

σ

(

(hm)
T
Wm

)

⊗ σ

(

(Wc)
T
hc

))

+ b1

)

The bilinear interaction can be understood as map-
ping the miRNAs and circRNAs embedding vectors into 
a shared feature space using the weight matrix Wm and 
Wc . Subsequently, these mapped representations undergo 
vector multiplication, resulting in a high-dimensional 
interaction feature matrix. Additionally, the interaction 
feature matrix is subjected to a linear projection opera-
tion, which maps the high-dimensional features into a 
low-dimensional representation space, generating the 
linear projection feature vectors Xheter

m  and Xheter
c  . This 

process enables MFERL to effectively capture the non-
linear relationships between the input features, thereby 
enhancing its ability to model higher-order interactions 
between miRNAs and circRNAs features.

Model optimization and prediction
To capture higher-order relationships between nodes, we 
fully leveraged the advantages of contrastive learning and 
developed contrastive objectives to obtain high-quality 
feature embeddings. We treated the fused representa-
tion of the original features as the initial node embed-
dings einitialm  and Xinitial

c  . The embeddings Xhomo
m  and 

Xhomo
c  , obtained by aggregating different features on the 

homogeneous graph via graph convolution, represented 
the homogeneous embeddings that incorporate infor-
mation from homogeneous neighbors. The embeddings 
Xmcam
m  and Xmcam

c  , obtained through dual-convolution 
enhanced learning of different features, represented the 
aggregated embeddings of the nodes. The embeddings 
Xheter
m  and Xheter

c  , derived from bilinear interactions of 
heterogeneous neighbors, represented the heterogene-
ous embeddings. We utilized these embeddings to model 
the high-dimensional embedding relationships between 
RNAs. Specifically, we considered the embeddings of the 
nodes and those obtained from the aforementioned three 
feature extraction methods as positive pairs and used the 
InfoNCE loss function to minimize the distance between 
positive samples. Taking miRNAs as an example:

here, InfoNCE(x, y) =
∑

n∈Nm
− log

exp (xmn ·ymn/τ)
∑

i∈Nm
exp

(

xmn ·ymi
/τ

) , 
ℓm is the local contrast loss of miRNAs, τ is the tempera-
ture hyperparameter of softmax. Similarly, the local con-
trast loss ℓc of circRNAs can be obtained. The final local 
contrast target loss is the weighted sum of ℓmlocal and ℓclocal 
as follows:

(8)
ℓm = InfoNCE

(

X
homo
m , e

initial
m

)

+ InfoNCE

(

X
mcam
m , e

initial
m

)

+ InfoNCE

(

X
heter
m , e

initial
m

)

(9)ℓcl = ℓmlocal + αℓclocal
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here, α is the weight parameter used to balance ℓmlocal and 
ℓclocal , default is 1.

After obtaining the node representations aggregated 
from different features and perspectives, we consid-
ered that the diverse node information could enrich 
the node feature information and contribute to the 
prediction results. Therefore, we concatenated the dif-
ferent feature representations to obtain the final node 
representation:

here, CNN(·) is a one-dimensional CNN. After that, we 
calculated the element-wise product of miRNAs node 
embedding and circRNAs node embedding. Then, we 
predicted the probability of interaction of cicRNA-
miRNA pairs through FNN:

here, ⊙ is the element-wise product of the miRNAs node 
vector and the circRNAs node vector. FNN(·) is a single-
layer FNN whose output is activated by the Sigmoid acti-
vation function.

To optimize the model, we applied the cross-entropy 
loss function during model training to calculate the 
node classification loss:

here, rij indicates node label, r̂ij represents the prediction 
score, and introduced a contrastive learning objective as 
an auxiliary task. The final loss of the entire model is for-
mulated as follows:

here, �1 is a hyperparameter that balances the weight of 
the loss function. θ is the L2 regularization parameter.
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CMI  circRNA-miRNA interaction
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(10)
Mi = CNN

(

concatenate
(

Xhomo
mi

,Xmcam
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(
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