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Abstract 

Background  Drug-target binding affinity (DTA) prediction can accelerate the drug screening process, and deep 
learning techniques have been used in all facets of drug research. Affinity prediction based on deep learning meth-
ods has proven crucial to drug discovery, design, and reuse. Among these, the sequence-based approach using 1D 
sequences of drugs and targets as inputs typically results in the loss of structural information, whereas the structure-
based method frequently results in increased computing costs due to the intricate structure of the molecule graph.

Results  We propose a sequential multifeature fusion method (SMFF-DTA) to achieve efficient and accurate predic-
tion. SMFF-DTA uses sequential methods to represent the structural information and physicochemical properties 
of drugs and targets and introduces multiple attention blocks to capture interaction features closely.

Conclusions  As demonstrated by our extensive studies, SMFF-DTA outperforms the other methods in terms of vari-
ous metrics, showing its advantages and effectiveness as a drug-target binding affinity predictor.
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Background
Drug discovery is a time-consuming and expensive pro-
cess that typically costs 10–15 years and over $200 mil-
lion to launch a medicine effectively [1]. In practice, 
drugs usually function as ligands, interacting with target 

proteins to exert their specific effects. The efficacy of 
a drug typically depends on how strongly it binds to its 
target protein, and determining this process is criti-
cal to uncovering the mechanism of drug action. Bind-
ing affinity represents the interaction strength between 
drug–target pairs, and its prediction via experimental 
or computational methods is called drug–target binding 
affinity (DTA) prediction. Drugs with strong interactions 
are often selected as potential active compounds accord-
ing to their predicted affinity values [2], providing can-
didate drugs for subsequent biological wet experiment 
verification [3] and promoting drug discovery, design and 
reuse. Binding affinity clearly serves as an essential indi-
cator of the strength of drug–target interactions, which 
constitute the core of drug research and development [4].
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Early approaches for DTA prediction are traditionally 
achieved via wet experiments, which tend to be reliable 
and accurate, but the process is demanding and costly. 
With the advent of computer-aided drug design tech-
niques, prediction methods based on physical or molecu-
lar docking have been developed. However, physics-based 
prediction methods, such as free energy simulation and 
molecular dynamics simulation, often result in consid-
erable computational overhead in practical applications. 
The molecular docking method uses a search algorithm 
to predict 3D complexes formed by drug–target pairs [5], 
but the results are always inaccurate. As a data-driven 
approach, machine learning models are excellent at pro-
cessing low-dimensional data with minimal computa-
tional costs and high interpretability [6]. For example, 
KronRLS [7] predicts binding affinity via the Kronecker 
regularized least square method, whereas SimBoost [8] 
constructs features of drugs, targets and drug–target 
pairs via gradient boosting machines to make predictions 
and generate prediction intervals. However, machine 
learning-based methods rely heavily on hand-extracted 
features, which requires researchers to have extensive 
domain knowledge [9].

With advances in deep learning technology, deep 
learning-based approaches are increasingly being applied 
to all stages of drug development [10]. Since it is able to 
automatically generate feature representations from raw 
inputs without the need for any relevant domain knowl-
edge [11], this makes it much easier to process biological 
data with extremely complex internal structures. Deep 
learning-based methods can accelerate the process of 
drug screening, thus greatly reducing development costs 
and time. Drugs and targets are intrinsically complex 
biological data that contain abundant feature informa-
tion. The most widely used features are 1D sequences, 
including simplified molecular linear input specification 
(SMILES) of drugs and amino acid sequences of targets, 
from which deep learning methods such as convolu-
tional neural networks (CNNs) [11], recurrent neural 
networks (RNNs) [12], transformers [13] and others are 
then employed to extract implicit features. For example, 
DeepDTA [14] uses a CNN to extract drug and target 
features separately through successive 1D convolutional 
layers. GANsDTA [15] employs generative adversarial 
networks (GANs) to extract features in an unsupervised 
manner. TF-DTA [16] uses the encoder modules of the 
transformer and multilayer CNNs to obtain better pro-
tein and drug representations, respectively. However, 
such sequence representations often ignore important 
structural information. Therefore, models that consider 
the molecular graph of drugs and distance maps or con-
tact maps of targets as inputs, which extract structural 
features through various graph neural networks (such as 

GCN [17] and GAT [18]), can be developed. For exam-
ple, when a molecule graph is used as the drug input, 
LLMDTA [19] focuses more on the intricate feature of 
the drug component and attempts to integrate the drug 
structure into the sequence-only method. MultiDTA 
[20] introduces both drug molecular graphs and target 
contact maps to provide more comprehensive features 
through the fusion of multimodal information. However, 
when dealing with large-scale graphs, it is difficult for a 
graph neural network to compute as efficiently as sequen-
tial models because of the complex relationships between 
nodes and edges. Furthermore, how to effectively fuse 
multimodal information remains a challenge for methods 
that use both sequence and graph inputs.

Considering the aforementioned issues, we propose a 
novel deep learning model, SMFF-DTA, to predict drug-
target binding affinity. SMFF-DTA represents the struc-
tural information of drugs and targets in sequential ways 
and innovates encoding methods for the physicochemi-
cal properties of drug atoms and amino acid residues. 
Additionally, we construct a feature encoder to imple-
ment feature extraction in both local and global modes 
and design a multiple attention block to extract crucial 
interaction features between drugs and targets in both 
direct and indirect ways. On the basis of the experimen-
tal results, SMFF-DTA has demonstrated its ability to 
accurately predict drug-target binding affinity, as it out-
performs other novel advanced methods.

Results and discussion
Performance evaluation
We contrast the seven state-of-the-art methods dis-
cussed in the Introduction section with our proposed 
model SMFF-DTA. As seen from the results in Table 1, 
SMFF-DTA has achieved better performance in both 
Davis and KIBA. Compared with the second-best results, 
the evaluation indices MSE, R2

m , and CI are improved by 
2%, 1.6%, and 0.4%, respectively, in Davis and by 0.5%, 
1.2%, and 0.4%, respectively, in KIBA. SMFF-DTA is a 
potent approach for affiinity prediction, as evidenced by 
its outstanding performance in terms of error, correla-
tion, and accuracy.

Ablation experiments
To illustrate the necessity of multifeature inputs, we test 
the effects of different kinds of inputs on model perfor-
mance. More precisely, sequences include drug SMILES 
and target amino acid sequences, Sequence+Structure 
adds drug fingerprints and target secondary structures, 
and Sequence+Structure+Properties adds the physico-
chemical properties of drug atoms and target residues. As 
shown in Fig. 1a, multifeature inputs can increase model 
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performance; thus, achieving comprehensive input repre-
sentations is necessary.

To demonstrate the effectiveness of capturing inter-
action information in both direct and indirect ways, we 
conduct ablation experiments on cross-attention, inter-
action blocks, and multiple attention blocks. Figure  1b 
clearly shows that model performance will suffer if any 
of the interaction capture parts are eliminated. This sug-
gests that direct and indirect approaches to capture inter-
actions can work in conjunction and are both capable of 
efficiently extracting interaction features.

To prove the effectiveness of our proposed encod-
ing method for the physicochemical properties of drug 
atoms, we compare three encoding methods in total. 
Method 1 does not consider the order of atoms in 
SMILES and directly fills the first x row of the atom fea-
ture matrix, where x is the number of atoms in SMILES. 
Methods 2 and 3 take the order in account, only with 
the difference in the filling of nonatomic bits (such as 
bonds and ring structures), where Method 2 considers 
only atom bits and puts the nonatomic bits with zero, 
whereas Method 3 fills the nonatomic bits with features 
of the previous atom. The results in Fig.  1c show that 
Method 3 achieves the best performance, which indicates 
that the filling of nonatomic bits can consider the fea-
tures of adjacent nodes to a certain degree and effectively 
expresses the physicochemical properties of drug atoms 
in a sequential way.

Case study
Nine compounds are chosen at random from the PDB-
bind [21] database, and we ensure that the protein–ligand 
pairs are not present in Davis or KIBA. Besides, due to 
the larger data volume and more interactions in the KIBA 
dataset, we decide to use the model trained on KIBA to 
predict the affinity of these samples. As demonstrated by 
the findings in Table 2, 8 out of 9 samples are consistent 

with the ranking of PDBbind experimental values. This, 
to some extent, proves the generalizability and applicabil-
ity of our model, which is capable of accurately extracting 
the features of unseen drugs and targets.

We further analyze the mis-pridected sample (PDBid: 
1 g2k). From our point of view, the most likely reason for 
the prediction error is because that the number of short 
protein sequences (less than 200) in KIBA is 0, largely 
leading to the insufficient training for short sequences. 
However, the length of the protein sequence normally is 
not set, so this guide us to investigate further in DTA pre-
diction, trying to figure out how to better account for the 
various protein sequence lengths to improve the univer-
sality of the model.

Conclusions
We propose a drug-target binding affinity prediction 
model, SMFF-DTA, on the basis of multiple sequential 
features and multiple types of attention, which provides 
a sequential representation of the structural information 
and physicochemical properties of drugs and targets and 
encodes the physicochemical properties of drug atoms 
and amino acid residues in a novel manner. Moreover, 
directly and indirectly capturing the important interac-
tion features simultaneously makes our model straight-
forward to interpret. The experimental outcomes 
demonstrate that SMFF-DTA has improved accuracy, 
correlation, and error and has a strong capacity for gen-
eralization, making it a useful technique for drug reuse 
and screening.

Methods
Datasets
To evaluate our model, we conduct experiments on two 
widely used high-quality public datasets: Davis [22] and 
KIBA [23]. The basic state of the above datasets is pre-
sented in Table 3.

Table 1  Performance comparison of SMFF-DTA and state-of-the-art methods on benchmark datasets

The best results in the metrics are highlighted in bold, and the second-best results are italicized

Davis KIBA

Method MSE R
2
m

CI MSE R
2
m

CI

KronRLS (2015) 0.379 0.407 0.871 0.411 0.342 0.782

SimBoost (2017) 0.282 0.644 0.872 0.222 0.629 0.836

DeepDTA (2018) 0.261 0.630 0.878 0.194 0.673 0.863

GANsDTA (2020) 0.276 0.653 0.881 0.224 0.675 0.866

TF-DTA (2023) 0.231 0.670 0.886 0.177 0.734 0.877

MultiDTA (2024) 0.231 0.694 0.893 0.156 0.761 0.890

LLMDTA (2024) 0.226 0.717 0.884 0.162 0.768 0.872

SMFF-DTA (our) 0.206 0.733 0.897 0.151 0.780 0.894
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Davis contains 68 drugs and 442 targets, forming a 
total of 30,056 drug-target samples. Its affinity data 
are expressed by the kinase dissociation constant (Kd, 
units:M), which is usually converted into the log space 
form (pKd) to reduce variance, ranging from 5.0 to 
10.8. KIBA contains 2111 drugs and 229 targets, result-
ing in 118,254 drug-target samples. Its affinity data, 
which is called KIBA score, ranges from 0 to 17.2. KIBA 
score unifies drug-target interaction data under various 

experimental conditions into a dimensionless compre-
hensive score by integrating data from multiple sources 
of biological activity (such as the inhibition constant (Ki, 
units: M), the half maximum inhibitory concentration 
(IC50, units: M) and Kd), using statistical weighting tech-
niques and implementing standardized transformations 
via negative logarithm processing. The detailed infor-
mation for drugs and targets in Davis and KIBA is dis-
played in Fig. 2. With the goal of covering as much data 

Fig. 1  Details of ablation results. a Ablation experiments on different kinds of inputs. b Ablation experiments on Multiple Attention Block. c 
Ablation experiments on encoding methods for physicochemical properties of drug atoms
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as possible and maintaining model performance, we ulti-
mately set the target sequence length and drug SMILES 
length to 1200 (86% in Davis, 90% in KIBA) and 100 
(100% in Davis, 97% in KIBA), respectively, on the basis 
of the distribution of the data. We set the number of drug 

atoms to 100 to facilitate the subsequent feature fusion 
process for the above reasons.

Input representation
The input of SMFF-DTA is composed of 2 main parts: 
drugs and targets. To obtain an extensive feature input 
that covers reasonably thorough information, we explic-
itly extract the structural information of drugs and tar-
gets and the physicochemical properties of atoms and 
residues in addition to their 1D sequence representation.

Drug input
The simplified molecular input line entry system 
(SMILES) [24] is a chemical specification that uses 
ASCII strings to describe the molecular structure, pro-
viding feature information such as atomic type, bond 
type and stereochemistry. Through label encoding, we 
create a dictionary in which each character of SMILES 
is assigned a distinct integer, totaling 64 integers. 
Hence, the sequence feature of drug input is shown 
by the drug SMILES matrix Fsmi ∈ R

bs×100 , where bs 
is the batch size. Additionally, Morgan fingerprints 
encode topological features of drug molecules, captur-
ing higher-level features such as substructure informa-
tion (functional groups, ring structures, etc.), atom and 
bond information (atomic type, bond type, etc.), and 
topological structure (branching structure, molecu-
lar graph connectivity, etc.). In this way, the structural 

Table 2  Case study on samples from the PDBbind dataset

PDBid PDB value (pKd) Predicted 
value (KIBA 
score)

3b65 9.27 11.61

4eo8 8.15 11.40

1 g2k 7.96 11.63

4 djv 6.72 11.32

2iwx 6.68 11.28

2fxs 6.06 11.13

2xca 5.60 11.00

3r88 4.82 10.90

1a30 4.30 10.86

Table 3  Statistics of the benchmarking datasets

Dataset Drugs Proteins Interactions

Davis 68 442 30,056

KIBA 2111 229 118,254

Fig. 2  Lengths of the target sequence, lengths of drug SMILES, and counts of drug atoms in Davis and KIBA. For KIBA dataset, we only plot 
the distribution of data within the specified length (protein sequence length: 2000, SMILES string length: 100, drug atom number count: 100)
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information of drugs can be conveyed implicitly, and 
the Morgan technique can remove some ambiguous 
atomic identifiers [25]. We use RDKit [26] to convert 
the SMILES strings to Morgan fingerprints [27], set-
ting the iteration radius to 2, thus obtaining the binary 
fingerprint matrix Ffp ∈ R

bs×1024 . Combining Morgan 
fingerprints with drug SMILES can improve the mod-
el’s generalizability and reduce the model’s sensitivity 
to single inputs. However, it is worth noting that nei-
ther the SMILES nor Morgan fingerprints mentioned 
above can represent the specific property information 
of drug atoms. Given this, we utilize RDKit to extract 
the related physicochemical properties from SMILES 
and represent it as a 38D one-hot atom feature vector. 
The atomic feature information we use is displayed in 
Table 4.

Moreover, we propose a novel encoding strategy to 
depict the physicochemical properties of drug atoms, 
as illustrated in Fig.  3. The position of each atom in 
SMILES is noted, and the atomic bits in SMILES are 
filled with physicochemical features of corresponding 
atoms, whereas the nonatomic bits (such as bonds) are 
filled with physicochemical features of preceding atoms 
to form the atom feature matrix Fatom ∈ R

bs×100×38 . 
By this means, we can take the physicochemical prop-
erties of neighboring atoms into account through the 
following feature extraction procedure, simulating the 

adjacency relationship such as the drug graph does to 
some extent.

Target input
The amino acid composition of the entire target protein 
chain contains extensive sophisticated protein features, 
including functional, evolutionary and other implicit 
features. The protein secondary structure refers to the 
main chain of the protein peptide in the spatial arrange-
ment of the atoms, providing information on the spa-
tial structure [28]. We obtain the secondary structure 
feature of targets by classifying residues into three 
states (alpha helix, beta strand, and coil), as in Deep-
FusionDTA [29], realizing sequential representation of 
target structural features. Inspired by the above clas-
sification method, we divided residues into seven cat-
egories according to their physicochemical properties, 
as shown in Table 5. The target sequence is then trans-
formed into a 7-category physicochemical property 
sequence that explicitly represents the physicochemi-
cal features of targets and significantly reduces the 
redundancy of protein features, shrinking the dimen-
sion of the feature matrix [30]. The above three target 
representations are then encoded to feature matrices 
Fseq ∈ R

bs×1200 , Fss ∈ R
bs×1200 , and  Fphyche ∈ R

bs×1200 
via label encoding.

Table 4  Atomic feature set

Atom features Classification

Atomic number 1, 6, 7, 8, 9, 15, 16, 17, 35, 53

Atomic degree 0, 1, 2, 3, 4, 5

Hydrogen number 0, 1, 2, 3, 4

Implicit valence electron number 0, 1, 2, 3, 4, 5

Formal charge −1, 0, 1

Aromatic 0, 1

Hybrid S-, SP-, SP2-, SP3-, SP3D-, SP3D2

Fig. 3  Encoding method for atom features. For nonatomic bits, such as “(,” “=,” and “),” the adjacency is simulated by sequentially filling in the features 
of the previous atom

Table 5  Classification of targets’ physical and chemical 
properties

Physicochemical properties Amino acid

Hydrophobic (nonpolar) A, C, G, I, L, M, V, F, W

Hydrophilic (polar) S, T, N, Q, P, U

Acidic (negatively charged) D, E

Basic (positively charged) K, R, H

Aromatic F, W, Y

Sulfur-containing C, M

Nonstandard X, Z, O
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Proposed method
SMFF-DTA applies feature fusion and feature extraction 
in the Model Learning part after obtaining multifeature 
inputs of drugs and targets. In this section, we extract 
both local and global features simultaneously via a self-
defined feature encoder. In addition, to capture crucial 
interaction features, we design a multiple attention block 
to focus closely on the interactions directly and indirectly. 
Since predicting binding affinity is a regression task, we 
obtain the final prediction value by using multiple fully 
connected layers in the last prediction section. Figure 4 
shows the architecture of SMFF-DTA.

Input embedding
The drug atom feature matrix Fatom obtained via one-
hot encoding is transformed into a dense feature matrix 
Xatom ∈ R

bs×100×Dd1 via a linear layer, where Dd1 rep-
resents the required dimensions. The high-dimensional 
sparse vectors are converted into low-dimensional dense 
vectors via linear transformation, improving the efficiency 
and compactness of feature representation. However, label 
encoding has certain limitations. It typically assumes that 
there is an order relationship between categories, which 
may affect our requirements for unordered classification. 
Therefore, we introduce an embedding layer before fea-
ture extraction and map the discrete inputs into continu-
ous vector representations, converting the drug SMILES 
matrix Fsmi to Xsmi ∈ R

bs×100×Dd2 and the target fea-
ture matrices Fseq , Fss , and Fphyche to Xseq ∈ R

bs×100×Dt1 , 

Xss ∈ R
bs×100×Dtd2 , and Xphyche ∈ R

bs×100×Dt3 , respec-
tively. Through the embedding layer, the model can better 
understand the input data and learn the complex rela-
tionships between different categories to improve model 
performance.

Feature encoder
For sequences, features in local and global modes are 
complementary. Global features provide an overview 
of the target to capture global patterns and long-dis-
tance dependencies, whereas local features reflect spe-
cific functional regions. Therefore, we design a feature 
encoder to extract local features with a three-layer 1D 
CNN and extract global features with a BiGRU:

where H (l)
t  is the feature representation of layer l, W (l)

t  
and b(l)t  are learnable weights and offsets, xt is the input 
of time step t, and Ht is the final merged hidden state of 
time step t. Then, adaptive average pooling is used to fur-
ther address Ht to preserve the most important feature 
through dimensionality reduction. To further enhance 
the representation capability of the model, we also incor-
porate the squeeze and excitation (SE, shown in Fig.  5) 
module [31] into the feature encoder. This helps us to 
explicitly model the interdependence between channels 

(1)H
(l+1)
t = RELU CNN1d W

(l)
t , b

(l)
t ,H

(l)
t , l = 0, 1, 2

(2)Ht = BiGRU(xt ,Ht−1)

Fig. 4  Architecture of SMFF-DTA. The overall pipeline is shown on the left side. The internal details of the feature encoder and the specific 
implementation process of the multiple attention block are shown on the right side
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and adaptively recalibrate the weights of different chan-
nels, realizing self-attention on channel dimensions [32]. 
We employ the SE block after the embedding layer and 
after feature extraction, allowing the network to focus 
better on more significant features, thereby indirectly 
reducing the impact of noise.

Furthermore, each type of feature in drug or tar-
get inputs is not independent; thus, we select efficient 
feature fusion strategies to further utilize the comple-
mentarity among multiple features, strengthening the 
model’s robustness by lowering the uncertainty of each 
type of feature [33]. Since the tensor form of SMILES 
and atomic feature representation are different from that 
of the Morgan fingerprint, we choose the mid-fusion 
method to fuse drug features. In other words, we con-
catenate the features that are extracted separately, using 
a feature encoder to extract SMILES and atomic features 
while using an MLP to transform Morgan fingerprints 
into higher-level representations. In contrast to those of 
drugs, the tensor forms of target inputs are consistent. 
Therefore, we directly concatenate the inputs to extract 
the overall representation via the feature encoder to fully 
utilize the explicit information provided by the secondary 
structure and physicochemical properties though early 
fusion.

Multiple attention block
To better capture important drug–target interactions, we 
design a multiple attention block to extract interaction 
features in both indirect and direct ways. We improve 
the attention part of AttentionDTA [34], on the basis of 
which the interaction block is constructed. Interaction 
information is indirectly extracted by obtaining the inter-
action weight graph, and an SE block is added to reshape 
the channel weights. In addition, we capture interaction 
information directly through a multihead cross-attention 
mechanism, constructing explicit interactions between 

drugs and targets to take full advantage of their correla-
tions [35], as shown in Fig.  6. Furthermore, parameter 
sharing is realized between drug attention and target 
attention, simplifying the computation to some extent. 
Taking drug attention as an example, we first recalibrate 
feature channels with the SE block and then map the 
input Query ( Qd ), Key ( Kd ), and Value ( Vd ) into multi-
ple subspaces via linear transformations. To realize infor-
mation exchange between drugs and targets, a weighted 
sum of target values ( Vt ) is performed by calculating the 
attention score in each subspace. Ultimately, the new rep-
resentation of the drug feature is generated by concate-
nating the outputs from each head together.

Extracted features acquired in direct and indirect ways 
are then weighted and fused. After maximum pooling, 
the most important feature is captured to represent the 
final feature:

where X1 and X2 represent the features after indirect and 
direct attention, respectively, and where Xorigin repre-
sents the input features reshaped by the SE block.

Prediction
The final features of the drug and target obtained via con-
catenation are transmitted to the MLP with four fully 
connected layers, which predict the affinity value as the 
output:

(3)Wscore = Softmax(X1 · X2)

(4)Xnew = X1 ·Wscore + X1 + X2 · (1−Wscore)+ X2 + Xorigin

(5)Xout = MaxPool(Xnew)

(6)Xin = Concat(Xd ,Xt)

(7)Xout = LeakyReLU(FC(Xin))

Fig. 5  Details of the squeeze-and-excitation (SE) block. B represents the batch size, L represents the length, and C represents the channel 
dimension



Page 9 of 11Wang et al. BMC Biology          (2025) 23:120 	

Model training
Our model is trained via 5-fold CV, randomly dividing 
the dataset into six parts, one of which is utilized as an 
independent test set, while the remaining five parts are 
trained and verified via nested cross-validation. MSE, 
as the loss function for model training, assesses the 
gap between the predicted and actual values:

where pi and yi are the predicted affinity and actual value, 
respectively. The AdamW optimizer is used for param-
eter training. Model performance is monitored according 
to the MSE values, preventing the model from overfit-
ting via an early stop strategy. The hyperparameter set-
tings of our model are shown in Table 6. The batch size 
and learning rate on KIBA are increased in proportion to 
the size of the dataset, which is approximately four times 
larger than Davis’s. Additionally, the results of the param-
eter experiments on the batch size and learning rate are 
shown in Additional file 1: Table 1, and the results of the 
experiments on the number of attention heads are shown 
in Additional file 1: Table 2 and Table 3.

Evaluation metrics
Regarding affinity prediction as a regression task, we eval-
uate model performance in terms of the mean squared 
error (MSE), R2

m and concordance index (CI). The MSE 
measures the deviation between the predicted and actual 
values and assesses the error of model prediction:

(8)Loss =
1

n

n
∑

i=1

(pi − yi)
2

where pi and yi are the predicted affinity and actual value, 
respectively. R2

m [36] reflects the external predictive per-
formance of a model, which is widely used to verify the 
regression-based quantitative structure–activity relation-
ship (QSAR) model and evaluate the correlation:

where r2 and r20 are the square correlation coefficients 
with and without intercepts, respectively. Generally, the 
predictive performance of a model whose R2

m exceeds 0.5 

(9)MSE =
1

n

n
∑

i=1

(pi − yi)
2

(10)R2
m = r2 ∗

(

1−

√

r2 − r20

)

Fig. 6  Details of multihead cross-attention between the drug and target

Table 6  Hyper-parameters settings of SMFF-DTA

The best parameters selected according to the experimental results are shown 
in bold

Hyper-parameters Settings

Dd1, Dd2 64, 128

Dt1, Dt2, Dt3 64, 6, 15

Learning rate [1e-6, 5e-6, 
8e-6, 1e-5]
(Davis), 
2e-5(KIBA)

Batch size [32, 64, 128, 
256](Davis), 
128(KIBA)

Interaction Block Head Number [2, 4, 8, 16]

Cross Attention Head Number [2, 4, 8, 16]
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is considered acceptable. CI [37] measures whether the 
predicted values of two random drug–target pairs are in 
the same order as their true values, assessing the accu-
racy of the model:

where Z is a normalized constant and h(x) is step 
function.

Abbreviations
DTA	� Drug-target binding affinity
SMILES	� Simplified molecular linear input specification
CNN	� Convolutional neural network
RNN	� Recurrent neural network
GAN	� Generative adversarial network
GCN	� Graph convolutional network
GAT​	� Graph attention network
MSE	� Mean square error
CI	� Consistency index
Kd	� Kinase dissociation constant
Ki	� Inhibition constant
IC50	� Half maximum inhibitory concentration
1D CNN	� 1D convolutional neural network
BiGRU​	� Bidirectional gated recurrent unit
MLP	� Multilayer perceptron
CV	� Cross-validation

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12915-​025-​02222-x.

Additional file 1: Tables 1-3. The document shows the experimental results 
of some parameters of SMFF-DTA. Table 1 - The parameter experiments 
on batchsize and learning rate in Davis. Table 2 - The experiments on the 
number of attention heads in Cross-Attention. Table 3 - The experiments 
on the number of attention heads in Interaction Block.

Acknowledgements
Not applicable.

Authors’ contributions
Zhijun Xia contributed to the initial draft and the design and implementation 
of the experiments. Runqiu Feng and Tongyu Han were responsible for data 
collection. Wenqian Yu and Hanyu Wang made reference preparation. Xun 
Wang and Xingguang Wang provided experimental guidance and revised the 
manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of 
China [No.61972416], Natural Science Foundation of Shandong Province [No.
ZR2022LZH009], GHfund C (202407035455), National Key R&D Program of 
China [No.2021YFA1000103-3].

Data availability
The datasets and code supporting the conclusions of this article are available 
in the Zenodo repository [https://​doi.​org/​10.​5281/​zenodo.​15054​908]. All data 

(11)CI =
1

Z

∑

yi > yj

h(pi − pj)

(12)h(x) =







1, x > 0
0.5, x = 0
0, x < 0







generated or analysed during this study are included in this published article, 
its supplementary information files and publicly available repositories.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 12 February 2025   Accepted: 24 April 2025

References
	1.	 Berdigaliyev N, Aljofan M. An overview of drug discovery and develop-

ment. Futur Med Chem. 2020;12(10):939–47.
	2.	 Zhu X, Liu J, Zhang J, Yang Z, Yang F, Zhang X. FingerDTA: a fingerprint-

embedding framework for drug-target binding affinity prediction. Big 
Data Min Anal. 2022;6(1):1–10.

	3.	 Kimber TB, Chen Y, Volkamer A. Deep learning in virtual screening: recent 
applications and developments. Int J Mol Sci. 2021;22(9):4435.

	4.	 Zeng X, Li SJ, Lv SQ, Wen ML, Li Y. A comprehensive review of the recent 
advances on predicting drug-target affinity based on deep learning. 
Front Pharmacol. 2024;15:1375522.

	5.	 Jiang M, Shao Y, Zhang Y, Zhou W, Pang S. A deep learning method for 
drug-target affinity prediction based on sequence interaction informa-
tion mining. PeerJ. 2023;11:e16625.

	6.	 Wang H. Prediction of protein–ligand binding affinity via deep learning 
models. Brief Bioinform. 2024;25(2):bbae081.

	7.	 Pahikkala T, Airola A, Pietilä S, Shakyawar S, Szwajda A, Tang J, et al. 
Toward more realistic drug-target interaction predictions. Brief Bioinform. 
2015;16(2):325–37.

	8.	 He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: a read-across 
approach for predicting drug-target binding affinities using gradient 
boosting machines. J Cheminformatics. 2017;9:1–14.

	9.	 Chauhan NK, Singh KA, review on conventional machine learning vs 
deep learning. In: 2018 International conference on computing, power 
and communication technologies (GUCON). IEEE; 2018. pp. 347–52.

	10.	 Askr H, Elgeldawi E, Aboul Ella H, Elshaier YA, Gomaa MM, Hassanien AE. 
Deep learning in drug discovery: an integrative review and future chal-
lenges. Artif Intell Rev. 2023;56(7):5975–6037.

	11.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521(7553):436–44.

	12.	 Zaremba W. Recurrent neural network regularization. 2014. arXiv preprint 
arXiv:​1409.​2329.

	13.	 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neu-
ral Inf Process Syst. 2017;30:5998–6008. https://​doi.​org/​10.​48550/​arXiv.​
1706.​03762.

	14.	 Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug-target binding affin-
ity prediction. Bioinformatics. 2018;34(17):i821–9.

	15.	 Zhao L, Wang J, Pang L, Liu Y, Zhang J. GANsDTA: Predicting drug-target 
binding affinity using GANs. Front Genet. 2020;10:1243.

	16.	 Li W, Zhou Y, Tang X. TF-DTA: A Deep Learning Approach Using Trans-
former Encoder to Predict Drug-Target Binding Affinity. In: 2023 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 
2023. pp. 418–421.

	17.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph 
neural network model. IEEE Trans Neural Netw. 2008;20(1):61–80.

	18.	 Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph 
attention networks. 2017. arXiv preprint arXiv:​1710.​10903.

	19.	 Tang W, Zhao Q, Wang J. LLMDTA: Improving Cold-Start Prediction in 
Drug-Target Affinity with Biological LLM. In: International Symposium on 
Bioinformatics Research and Applications. Springer; 2024. pp. 152–163.

https://doi.org/10.1186/s12915-025-02222-x
https://doi.org/10.1186/s12915-025-02222-x
https://doi.org/10.5281/zenodo.15054908
http://arxiv.org/abs/1409.2329
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1710.10903


Page 11 of 11Wang et al. BMC Biology          (2025) 23:120 	

	20.	 Deng J, Zhang Y, Pan Y, et al. Multidta: drug-target binding affinity 
prediction via representation learning and graph convolutional neural 
networks. Int J Mach Learn Cyber. 2024;15:1–10. https://​doi.​org/​10.​1007/​
s13042-​023-​02042-x.

	21.	 Wang R, Fang X, Lu Y, Yang CY, Wang S. The PDBbind database: method-
ologies and updates. J Med Chem. 2005;48(12):4111–9.

	22.	 Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. 
Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 
2011;29(11):1046–51.

	23.	 Tang J, Szwajda A, Shakyawar S, Xu T, Hintsanen P, Wennerberg K, et al. 
Making sense of large-scale kinase inhibitor bioactivity data sets: a com-
parative and integrative analysis. J Chem Inf Model. 2014;54(3):735–43.

	24.	 Weininger D. SMILES, a chemical language and information system. 1. 
Introduction to methodology and encoding rules. J Chem Inf Comput 
Sci. 1988;28(1):31–6.

	25.	 Yang X, Niu Z, Liu Y, Song B, Lu W, Zeng L, et al. Modality-DTA: multimo-
dality fusion strategy for drug-target affinity prediction. IEEE/ACM Trans 
Comput Biol Bioinforma. 2022;20(2):1200–10.

	26.	 Landrum G, et al. RDKit: A software suite for cheminformatics, com-
putational chemistry, and predictive modeling. Greg Landrum. 
2013;8(31.10):5281.

	27.	 Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 
2010;50(5):742–54.

	28.	 Deng L, Zeng Y, Liu H, Liu Z, Liu X. DeepMHADTA: prediction of drug-
target binding affinity using multi-head self-attention and convolutional 
neural network. Curr Issues Mol Biol. 2022;44(5):2287–99.

	29.	 Pu Y, Li J, Tang J, Guo F. DeepFusionDTA: drug-target binding affinity 
prediction with information fusion and hybrid deep-learning ensemble 
model. IEEE/ACM Trans Comput Biol Bioinforma. 2021;19(5):2760–9.

	30.	 Che C, Zhu M, Zhu Y, Zhang Q, Zhou D, Wang B. A protein embedding 
model for drug molecular screening. In: 2020 IEEE International Confer-
ence on Big Data and Smart Computing (BigComp). IEEE; 2020. pp. 
251–254.

	31.	 Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 
New York: IEEE; 2018. pp. 7132–7141.

	32.	 Kyro GW, Brent RI, Batista VS. Hac-net: A hybrid attention-based convolu-
tional neural network for highly accurate protein-ligand binding affinity 
prediction. J Chem Inf Model. 2023;63(7):1947–60.

	33.	 Jones D, Kim H, Zhang X, Zemla A, Stevenson G, Bennett WD, et al. 
Improved protein-ligand binding affinity prediction with structure-based 
deep fusion inference. J Chem Inf Model. 2021;61(4):1583–92.

	34.	 Zhao Q, Duan G, Yang M, Cheng Z, Li Y, Wang J. AttentionDTA: drug-
target binding affinity prediction by sequence-based deep learning 
with attention mechanism. IEEE/ACM Trans Comput Biol Bioinforma. 
2022;20(2):852–63.

	35.	 Jin Z, Wu T, Chen T, Pan D, Wang X, Xie J, et al. CAPLA: improved 
prediction of protein–ligand binding affinity by a deep learning 
approach based on a cross-attention mechanism. Bioinformatics. 
2023;39(2):btad049.

	36.	 Ojha PK, Mitra I, Das RN, Roy K. Further exploring rm2 metrics for valida-
tion of QSPR models. Chemometr Intell Lab Syst. 2011;107(1):194–205.

	37.	 Gönen M, Heller G. Concordance probability and discriminatory power in 
proportional hazards regression. Biometrika. 2005;92(4):965–70.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s13042-023-02042-x
https://doi.org/10.1007/s13042-023-02042-x

	SMFF-DTA: using a sequential multi-feature fusion method with multiple attention mechanisms to predict drug-target binding affinity
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results and discussion
	Performance evaluation
	Ablation experiments
	Case study

	Conclusions
	Methods
	Datasets
	Input representation
	Drug input
	Target input

	Proposed method
	Input embedding
	Feature encoder
	Multiple attention block
	Prediction

	Model training
	Evaluation metrics

	Acknowledgements
	References


