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Abstract 

Intrinsically disordered proteins (IDPs) and biomolecular condensates are critical for cellular processes and physi-
ological functions. Abnormal biomolecular condensates can cause diseases such as cancer and neurodegenerative 
disorders. IDPs, including intrinsically disordered regions (IDRs), were previously considered undruggable due to their 
lack of stable binding pockets. However, recent evidence indicates that targeting them can influence cellular pro-
cesses. This review explores current strategies to target IDPs and biomolecular condensates, potential improvements, 
and the challenges and opportunities in this evolving field.
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Biomolecular condensates and IDPs
Biomolecular condensates are membrane-less organelles 
or compartments within cells that undergo a process 
known as liquid–liquid phase separation (LLPS) [1, 2]. 
These condensates are dynamic and may comprise dif-
ferent subcellular components such as nucleic acids, 
proteins, and other biomolecules, thereby organizing 
the intracellular environment and compartmentalizing 

cellular processes without the need for membrane-bound 
structures [3]. Biomolecular condensates are responsi-
ble for coordinating complicated biochemical reactions 
in a spatial and temporal manner [4–6]. Dysfunction of 
phase separation, characterized by disruptions in the 
intracellular liquid–liquid phase separation process, 
encompasses several anomalies: the inability to execute 
LLPS, where biomacromolecules such as proteins and 
nucleic acids fail to spontaneously form high-concen-
tration condensates via multivalent interactions [7, 8]; 
impediments in transitioning between dense and dilute 
phases, affecting biomolecule distribution and function 
due to either excessively rapid or slow phase transitions 
[9]; condensates aging into insoluble phases, leading to 
protein aggregation and fibrosis as observed in neurode-
generative diseases [10, 11]; compromised stability and 
dynamics of condensates, which are essential for accurate 
cellular signal response and effective participation in bio-
chemical reactions [12]; and abnormal composition and 
regulation of condensates, indicating irregularities in reg-
ulatory mechanisms that alter condensate composition 
and size, thereby impacting their function [13].
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Biomolecular condensates consist of a large number of 
molecules that determine and contribute to the material 
properties, compatibility, and localization of the conden-
sates. These molecules can be classified as scaffolds or 
clients [14], based on their function in the condensate 
[15]. Usually, scaffolds are recognized as the supports of 
phase separation, while clients contain binding elements 
that provide free access to the condensates (Fig. 1) [16]. 
In cells, scaffolds typically have high local concentra-
tions with multiple valences that depend on intrinsically 
disordered proteins (IDPs) [17]. Scaffolds typically initi-
ate condensation and are characterized by high parti-
tion coefficients [18]. The remaining molecules, which 
are classified as clients, are transferred into condensates 
through interactions with scaffolds [19]. Although cli-
ents typically exhibit lower concentrations and less pro-
nounced interactions, the affinity between scaffolds and 
clients represents a crucial determinant in their recruit-
ment to condensates [20, 21].

The concept of IDPs was first proposed many years 
ago [22]. Strictly defined, IDPs are proteins that are 
entirely disordered and do not fold into a single, stable 
globular shape [23]. And instead of the full-length pro-
tein, intrinsically disordered regions (IDRs) are partial 
regions of the protein that are disordered. IDRs that are 

longer than 30 residues account for approximately one-
third of the proteomes of most eukaryotic organisms [5, 
6, 16, 24, 25]. According to the SWISS-PROT database, 
unstructured regions are present in about 79% of pro-
teins associated with human cancer [26]. In this review, 
we use the term IDP broadly to refer to proteins with 
extensive, though not necessarily complete, functional 
disorder. More detailed classifications of IDPs and IDRs 
have also been described in the literature [6]. IDPs are 
characterized by their flexibility and ability to adopt 
multiple conformations, unlike structurally elucidated 
proteins that have well-defined structures required for 
their function [27, 28]. The structural flexibility of IDPs 
enables them to be involved in many kinds of biological 
processes, like signaling transduction [29], transcrip-
tional control [30], and DNA repair [31–33]. IDPs and 
IDRs play a crucial role in the formation and molecu-
lar properties of biomolecular condensate, and IDPs 
typically serving scaffolds in the condensates [16, 27, 
34]. Due to their conformational variability, IDPs are 
recognized as challenging targets for drug design, but 
they are also considered to have high pharmacological 
potential due to their involvement in various diseases, 
typically cancers [35] and neurodegenerative diseases 
[36].

Fig. 1 The formation of biomolecular condensates. Though multivalent interactions, scaffolds and clients can engage in aggregative processes, 
thereby giving rise to biomolecular condensates
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Abnormal biomolecular condensates in disease
The presence of aberrant condensates has been linked to 
various diseases, including cancer and neurodegenera-
tive diseases [37–43]. There are three main ways in which 
abnormal biomolecular condensates can lead to cancer 
and other diseases. Firstly, genetic mutations have the 
potential to alter the valence of either a scaffold or cli-
ent proteins. Mutated residues in a scaffold protein could 
alter the biochemical interactions between molecules 
and thereby affect the properties of a condensate [40, 
41]. For example, cancer related T-cell intracellular anti-
gen 1 (TIA1) mutations significantly increases the pro-
pensity of TIA1 protein to undergo phase transition and 
promotes the assembly of non-dynamic stress granules 
(SGs) [42]. Amyotrophic lateral sclerosis (ALS)-related 
TDP43 mutations in its C-terminal can disrupt TDP- 
43 interactions, and lead to the formation of pathologi-
cal aggregates [44, 45]. In Huntington’s disease, the exon 
1 fragment of the huntingtin protein, which contains an 
expanded polyglutamine tract, forms aggregates in the 
brains. Research has shown that this protein fragment 
can form liquid-like condensates, which can convert into 
solid-like fibrillar assemblies when the polyglutamine 
tract reaches disease-associated lengths [46]. Secondly, 
mutations of an upstream regulator of the condensate 
might lead to abnormal condensate and condensate 
properties. For example, dipeptide repeat polypeptides 
bind to the nucleolar protein Nucleophosmin 1 (NPM1), 
altering NPM1 phase separation, dispersing NPM1 from 
nucleoli, which might be a cause of ALS [43]. In Alzhei-
mer disease (AD), tyrosine-protein kinase Fyn-mediated 
tau phosphorylation and interaction between Fyn and 
tau may change tau trafficking and cause synaptic impair-
ment due to tau mis-sorting [47]. Thirdly, environmen-
tal perturbations can affect the general physicochemical 
conditions in the cell, resulting in abnormal ATP lev-
els, salt concentrations, or pH value [48–50]. All these 
changes in the physiological environment could lead to 
aberrant condensate formation throughout the cell. For 
example, environmental stimuli can induce the formation 
of stress granules, which are believed to accelerate aging 
[51].

Biomolecular condensates are involved in many vital 
cellular activities (Fig. 2), including chromatin organiza-
tion, signal transduction, DNA repair, and transcriptional 
regulation, which are critical functions often disrupted 
in cancer [52]. For example, mutations in cancer-related 
proteins can alter their phase behavior, leading to the 
formation of aberrant condensates that drive oncogenic 
processes [53, 54]. One such example is the LLPS of 
nuclear pore complex protein 98 (NUP98) with home-
obox A9 (HOXA9), which contributes to the forma-
tion of a broad superenhancer (SE)-like binding pattern, 

thereby promoting transcriptional activation of leukemo-
genic genes [55]. Because of their structural flexibility or 
complex features, various oncoproteins are considered 
as undruggable targets in tumor targeted therapy. It is 
noteworthy that recent studies have indicated that a con-
siderable number of these proteins are subject to regula-
tion by phase separation. For example, the carcinogenic 
transcription factors cellular myelocytomatosis oncogene 
protein (c-Myc) and tumor protein 53 (p53) can regulate 
downstream gene expression by forming condensates 
that recruit (RNA Pol II) and positive-transcription elon-
gation factor b (P-TEFb) [7, 56]. However, both c-Myc 
and p53 lack specific and defined binding pockets for 
small molecules to interact with, making it difficult to 
develop drugs that can specifically inhibit their activ-
ity [57, 58]. Targeting the c-Myc and p53 biomolecu-
lar condensates’ formation or functions may be a better 
approach than direct targeting of c-Myc and p53 protein. 
Interfering with biomolecular condensates is a potential 
approach to targeting undruggable proteins and making 
these powerful proteins druggable targets.

IDPs lack stable three-dimensional structures under 
physiological conditions but play critical roles in various 
biological processes and are associated with many major 
human diseases. While some IDPs are known to form 
phase-separated condensates, others do not form such 
structures. For example, inhibitor of nuclear factor κB 
(IκB) is an IDP with a relatively loose structure and lacks 
a well-defined three-dimensional structure [59]. How-
ever, its amino acid sequence distribution does not sup-
port the formation of a structural basis for driving phase 
separation [59]. BMS- 345541 is a highly selective inhibi-
tor of IκB kinase that binds at an allosteric site of the 
enzyme, blocking NF-κB-dependent transcription [60].

Drug design strategies target biomolecular 
condensates
A novel class of therapeutic agents, designated as 
“condensate modifying drugs (c-mods),” has emerged 
that exerts its effects either directly or indirectly on 
the structure and function of biomolecular conden-
sates [61]. These agents are not confined to small mol-
ecules, peptides, and oligonucleotides [62, 63]. c-mods 
are developed to achieve specific objectives, including 
repairing or eliminating a condensate, removing a tar-
get from its original condensate, or disrupting the func-
tion of a normal condensate. Based on the phenotypic 
change of the condensate, c-mods can be classified into 
4 categories: (1) dissolvers, (2) inducers, (3) localizers, 
and (4) morphers [63]. Dissolver c-mods can either 
dissolve or prevent the formation of a target conden-
sate [64, 65]. A drug-like molecule called integrated 
stress response inhibitor (ISRIB) is a typical dissolver 
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c-mod which can reverse the eukaryotic Initiation Fac-
tor 2 alpha (eIF2α)-dependent stress granule formation 
and restores protein translation [66]. Inducer c-mods 
are capable of triggering the formation of condensate, 
thereby increasing biochemical reaction rates. Further-
more, inducer c-mods may be employed to accelerate 
or initiate biochemical reactions [67, 68]. For example, 
tankyrase inhibitors promote the formation of a post-
translational modification (PTM)-derived degrada-
tion condensate that reduced beta-catenin levels [69]. 
Localizer c-mods can alter the sub-cellular localization 
of condensate community members [63]. For instance, 

NPM1, an abundant nucleolar protein, can form large 
oligomers and undergo liquid–liquid phase separation 
by binding to RNA or ribosomal proteins [70]. Local-
izer c-mods such as avrainvillamide can restore NPM1 
in the nucleus and nucleolus and enhanced therapeu-
tic efficacy against acute myeloid leukemia (AML) 
cells [71, 72]. Morpher C-mods are designed to target 
condensate functions by altering its morphology and 
material properties, including changes in condensate 
size, distribution, and shape. For instance, cyclopamine 
functions as a morphing c-mods, modifying the mate-
rial properties of the respiratory syncytial virus (RSV) 

Fig. 2 Biomolecular condensates are important components of the cell. Biomolecular condensates are involved in many vital cellular activities, 
and are crucial to the functions of various organelles. The nucleus contains Hsp70-Hsp40 chaperone condensates for protein folding, SEs-related 
transcriptional condensates for gene regulation, YAP/TAZ and p53-related condensates for cell response to signals and DNA damage, paraspeckles 
for RNA retention, nucleoli for ribosome biogenesis, and PML bodies for gene regulation. Mitochondria have Nur77/Bcl- 2 condensates 
for apoptosis, TFAM for DNA maintenance, and CypD for permeability control. In the cytosol, SGs manage mRNA and protein sequestration 
during stress, fusion oncoprotein condensates drive oncogenic signaling, and P-bodies handle mRNA degradation. Lysosomes contain 
galectin- 3 and cathepsins condensates for immune response and protein degradation. Autophagosomes have ULK1, p62, and LC3 condensates 
for autophagy, while the endoplasmic reticulum houses STING for immune signaling and TIS granules for translation control. These condensates are 
critical for cellular homeostasis and are potential therapeutic targets in diseases like cancer and neurodegenerative disorders
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condensate, thereby inactivating a transcription factor 
and inhibiting viral replication [73, 74].

Biomolecular condensates can be regulated by a vari-
ety of molecules [75]. Both scaffolds and clients could be 
effective targets for regulating biomolecular condensates. 
The majority of current research is concentrated on the 
development of drug targets for scaffolds, as it is believed 
that scaffolds represent the initial factor in the forma-
tion of biomolecular condensates [75, 76]. In light of the 
aforementioned considerations, we will now proceed to 
examine the strategy of drug-targeting IDPs and biomo-
lecular condensates in greater detail (Fig. 3).

Modulating biomolecular condensates through scaffold 
proteins
During phase separation, the protein concentration of 
the target protein is of great consequence, and any altera-
tion in this concentration will impact the formation 
and scale of biomolecular condensates [77]. However, 
many proteins that undergo phase separation have been 
reported to be overexpressed or under-expressed in can-
cers or other diseases, affecting their ability to undergo 
phase separation and leading to abnormal biological 
reactions [77, 78]. So, modulating the scaffold protein 

concentration may be an important and effective way to 
target biomolecular condensates. In the meantime, there 
are already established methodologies for regulating pro-
tein concentration, as described below.

Three types of protein degradation technologies are 
commonly used to down-regulate target proteins at the 
protein stage: proteolysis-targeting chimera (PROTAC), 
lysosome-targeting chimera (LYTAC) and autophagy-
targeting chimera (AUTAC) [79]. PROTAC employs the 
ubiquitin–proteasome system (UPS) to degrade proteins 
[80]. The work of the PROTAC to degrade the protein 
relies on the UPS system, which binds the target protein 
through a ubiquitin ligase, resulting in Lys- 48-linked 
ubiquitination and further degradation of the target pro-
tein [81]. The LYTAC and AUTAC are both designed 
based on the lysosomal degradation system [82, 83]. 
Degradation of target substances occurs through the use 
of lysosomes in the lysosomal degradation system [84]. 
Two lysosomal degradation pathways are observed in 
eukaryotic cells: the endosome-lysosomal pathway and 
the autophagy pathway. The endosome–lysosomal path-
way is responsible for the breakdown of target substances 
through membrane-based binding [85]. In the autophagy 
pathway, the target substance is engulfed by phagocytes 

Fig. 3 c-mods Design Strategies and Applications. This figure illustrates the various approaches to designing c-mods that target biomolecular 
condensates and their effects on these condensates. The strategies are categorized into four main types: Dissolvers, which either dissolve or prevent 
the formation of target condensates; Inducers, capable of triggering condensate formation and increasing biochemical reaction rates; Localizers, 
which relocate biomolecular condensates to other positions without compromising the integrity of the condensate; and Morphers, designed 
to alter the morphology and material properties of condensates, including changes in size, distribution, and shape. The figure provides examples 
of c-mods, including those that are currently in clinical trials, which are indicated with their respective trial identifiers: Everolimus (NCT05484310), 
AZD8055 (NCT00973076, NCT00731263), LMTM (NCT01689246), Nusinersen (NCT01839656)
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to form autophagosomes, which are subsequently 
degraded by lysosomes [86].

RNA interference (RNAi) has been demonstrated to 
modulate the synthesis of scaffold proteins at the RNA 
stage [87]. Two distinct types of RNAi are employed: 
small RNA and antisense oligonucleotides (ASOs) [88]. 
In the process of gene silencing, small RNAs interact with 
the RNA‐induced silencing complexes (RISC), which 
are capable of recognizing complementary mRNA. This 
interaction results in the degradation of the mRNA [89]. 
ASOs are a series of single strands of deoxynucleotides 
that can interact with target RNA to form a DNA–RNA 
hybrid. This enables RNA to be cleaved by ribonuclease 
H1 (RNaseH1), which ultimately results in a decrease in 
target protein expression [90].

The process of DNA editing relies on the use of specific 
DNA recognition elements and endonucleases to intro-
duce mutations into genes, thereby disrupting the syn-
thesis of scaffold proteins at the DNA stage [91]. Due to 
the advantages of simple design, low cost, high efficiency, 
the most commonly used DNA editing system is clus-
tered regularly interspaced short palindromic repeats-
associated protein 9 (CRISPR-Cas9), which was originally 
discovered in bacteria [92, 93]. The main components of 
CRISPR-Cas9 system are Cas9 endonuclease and single-
guide RNA (sgRNA) [94]. These two components form a 
Cas9 ribonucleoprotein (RNP) that can bind and cleave 
the target DNA [95].

Many recent studies have shown that PTM is an impor-
tant regulator of the phase separation and the proper-
ties of biomolecular condensates [96]. Given that PTM 
is capable of regulating the weak multivalent interaction 
that initiates phase separation, it has been regarded as a 
regulatory switch for the condensation process [97–99]. 
Regulating phase separation may be possible by control-
ling the activity of such enzymes. For example, LLPS of 
RNF168 is inhibited by small ubiquitin-like modification 
(SUMO)-specific peptidase 1 (SENP1), which specifi-
cally deSUMOylates RNF168 upon DNA double-strand 
breaks (DSB) [100]. Targeting SENP1 might be a better 
approach than direct target RNF168 phase separation. 
Further study experiments are necessary to prove its fea-
sibility. However, identifying the right PTM targets and 
finding specific small molecule activators or inhibitors 
will be difficult because most diseases can involve the 
dysfunction of many biomolecular condensates [101].

Interfering with condensation‐associated client molecules
The formation and maintenance of biomolecular con-
densates is also contingent upon the presence of cli-
ent molecules within the condensate, including nucleic 
acids [102]. The chemical interactions that drive con-
densate formation are multifaceted and involve a variety 

of non-covalent interactions. For instance, electrostatic 
interactions between the negatively charged phosphate 
backbone of nucleic acids and the positively charged resi-
dues of proteins, such as arginine and lysine, are crucial 
for condensate assembly [103, 104]. Additionally, hydro-
phobic interactions and π-π stacking between aromatic 
amino acids and nucleobases contribute to the stability 
and dynamics of these condensates [105, 106].

Recent studies have demonstrated that RNA plays a 
role in facilitating phase separation and is involved in 
the formation of numerous biomolecular condensates, 
including stress granules [107, 108], processing bodies 
[109, 110], neuronal transport granules [111], nuclear 
paraspeckles [112], and germ granules [113]. Addition-
ally, RNA can also inhibit the phase separation behavior 
of prion-like RNA-binding proteins (RBPs) [114, 115]. 
RNA’s secondary and tertiary structures, such as hair-
pin loops, helical motifs, and G-quadruplexes, serve as 
building blocks that provide flexible binding sites for 
various molecules, thereby promoting the formation of 
biomolecular condensates. G-quadruplex structures can 
facilitate gel-like phase separation and act as scaffolds, 
enabling single RNA molecules to interact with multiple 
RNA molecules, thus resisting degradation by ribonucle-
ases [116, 117].

Modifying biomolecule condensates by affecting RNA 
appears to be a viable approach, and certain regulatory 
elements are already present in cells. RNA modifications, 
such as N6-methyladenosine (m6 A), are crucial in regu-
lating RNA’s involvement in phase separation [118]. m6 
A is the most abundant RNA modification in eukaryotes 
and can influence RNA structure, interaction networks, 
localization, and stability, thereby modulating RNA’s par-
ticipation in phase separation processes [118, 119]. m6 
A modifications can alter the binding affinity of RNA, 
affecting its interactions with proteins and other mol-
ecules, and consequently impacting the assembly and 
function of condensates [120].

RNA helicases have been demonstrated to play a piv-
otal role in regulating phase-separated RNA–protein 
complexes [121]. RNA helicases utilize the energy from 
ATP hydrolysis to unwind RNA double strands or change 
the conformation of RNA–protein complexes [122]. They 
often contain IDRs that can facilitate condensate for-
mation in the presence of ATP and RNA [123, 124]. For 
example, DEAD/H-box ATP-dependent RNA helicase 
1 (Dhh1) is crucial for cytoplasmic mRNA metabolism 
and processing bodies (P-body) formation [125]. Dhh1’s 
helicase activity can influence the secondary structure of 
mRNA and RNA–protein interactions, thereby regulat-
ing the assembly and function of P-bodies [126]. Muta-
tions in Dhh1 can lead to abnormal P-body formation 
and dynamics, affecting cellular mRNA degradation and 
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storage processes [126, 127]. Similarly, mutations in other 
DEAD-box helicases like Ded1/Ddx3 have been shown 
to contribute to the formation of stress granules, likely by 
altering the stability and dynamics of RNA–protein com-
plexes [128, 129].

Besides RNA, DNA is also an important client in some 
biomolecular condensates [130]. The behavior of sin-
gle-stranded DNA (ssDNA) and double-stranded DNA 
(dsDNA) in complex with polycationic peptides differs 
significantly [131]. ssDNA is a shorter, more flexible, 
and hydrophobic polymer with a lower charge density, 
which strongly affects coacervation formation [132]. In 
contrast, long dsDNA has rarely been studied in peptide-
based coacervation due to its stiff chain, hydrophilicity, 
and high charge density [132]. However, recent stud-
ies have shown that short dsDNA can form coacervates 
with poly-l-lysine (pLys), contributing to the exploration 
of prebiotic cell evolution [132, 133]. The coacervates 
of short dsDNA and poly-l-lysine exhibit liquid–liquid 
phase separation instead of precipitation, and the short 
dsDNA dominates the aggregation and packing process 
in coacervation [132–134].

In the event that disease-associated enzymes are the 
condensate’s clients, it would be preferable to link a 
small-molecule inhibitor to a molecule that concentrates 
in the condensate. For instance, small molecule ISRIB can 
reverse the effects of eIF2α phosphorylation on transla-
tion and regulate the dynamics of stress granules, which 
may be significant for treating diseases associated with 
eIF2α phosphorylation, stress granule formation, and 
cognitive decline [134, 135].

Targeting protein–protein interaction or protein–nucleic 
acid interaction
A drug that could prevent the formation of protein–pro-
tein or protein-nucleic acid complexes is an option to 
disrupt biomolecular condensates [136]. In the case of 
protein–protein interactions, where one of the two part-
ners exhibits a well-defined structure and the other dis-
plays a flexible structure, drug design can be utilized to 
target the structured partner. Subsequently, the interac-
tion surface can be predicted utilizing the 3D structure 
and potential ligands can be developed based on this 
information [137]. For example, in the heat shock pro-
tein 90 (Hsp90)- cell division cycle 37 (Cdc37) interac-
tion, a novel triazine derivative called DCZ3112 has been 
identified as a disruptor. Molecular docking studies have 
shown that DCZ3112 forms hydrogen bond interactions 
with key amino acid residues such as Arg32 A, Glu33 A, 
Ser36 A, Ser115 A, Gly118 A, Gln119 A, and Arg167B at 
the protein–protein interaction (PPI) interface, which are 
major contributors to protein–ligand interactions [138].

However, the challenges come when the interact-
ing regions of both partners are disordered, because the 
interaction region among partners is ambiguous and it 
is difficult for small molecules to block the interaction 
[139]. In this context, the drug targeting strategy can be 
divided into two distinct steps. The initial step is to define 
the disordered regions that are involved in the interac-
tion. The subsequent step is to identify a molecule that 
binds to one of these regions and inhibits the interaction. 
Although direct structural analysis of IDP-IDP complexes 
may be infeasible, several alternative approaches can still 
yield valuable insights. One way to evaluate the impact of 
sequence mutations is to follow a systematic approach, 
such as alanine scanning and deep mutational scanning 
[140, 141]. An alternative approach is to computation-
ally predict potential complex structures through the use 
of techniques such as molecular dynamics simulation 
[142, 143] or machine learning-based structure predic-
tion methods such as AlphaFold series [144–146]. For 
instance, AlphaFold 3 has shown the ability to predict 
structures from input polymer sequences, residue modi-
fications, and ligand simplified molecular-input line-
entry system (SMILES), and can generalize to a number 
of biologically important and therapeutically relevant 
modalities [146].

It has been demonstrated that disordered regions often 
contain relatively short disordered sequences that exhibit 
molecular recognition and binding abilities. These 
sequences are referred to as molecular recognition frag-
ments (MoRFs) [147]. When MoRFs bind and initiate the 
protein–protein interaction, the IDRs transit from dis-
order to defined structure, they represent an ideal target 
for the drug design of biomolecular condensates [147]. 
Although there are multiple MoRF predictors online 
[148–150], designing protein–protein inhibitors remains 
a challenge. When a protein’s inability to sustain liquid–
liquid phase separation contributes to disease patho-
genesis, pharmacological agents that promote phase 
separation of the protein may serve as an alternative ther-
apeutic strategy. The objective is to utilize pharmacologi-
cal agents to simulate the binding partner of the targeted 
disordered protein, thereby facilitating the transition 
to an ordered state [151]. For example, curcumin inter-
acts with α-synuclein (α-Syn) during phase separation by 
binding to its hydrophobic regions, decreasing the fluid-
ity of α-Syn inside the condensates and effectively delay-
ing or inhibiting the transition to amyloid fibrils [138]. It 
can also destabilize preformed α-Syn amyloid aggregates 
in the condensates [138]. Another example is epigallocat-
echin gallate (EGCG), which directly binds to hydropho-
bic protein sequences through hydrophobic interactions 
and hydrogen bonding, modulating the phase separation 
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behavior of α-Syn and amyloid-β fibrils and maintaining 
them in a less aggregated, more soluble state [152–154].

Another important functional region within IDRs is 
short linear motifs (SLiMs). SLiMs are short sequences, 
typically 3 to 10 amino acids long, that mediate specific 
protein interactions. They are often flanked by disordered 
regions, which allow for conformational flexibility and 
the ability to engage multiple partners [155]. The recur-
rent interactions between SLiMs and well-structured 
domains suggest that SLiMs can affect phase-separated 
condensates, providing opportunities to manipulate these 
interactions to control biological activities [156, 157]. 
Targeting SLiMs within IDRs represents a new approach 
to achieving the targeting of IDRs [158]. For instance, tar-
geting SLiMs in human double minute X (HDMX) can 
mediate its interaction with p53, thereby affecting the 
binding of p53 to DNA [159].

A novel approach has been devised to enhance the 
inhibitory capacity of a drug on protein–protein bind-
ing. This is achieved by chemically linking two monova-
lent structural domain inhibitors [160, 161]. This strategy 
has shown promise in improving the binding potential of 
the resulting compound by introducing novel interaction 
patterns while retaining key interactions. Additionally, 
some small molecules regulating protein phase separa-
tion have been identified through phenotypic screening, 
and they often share common characteristics such as 
strong hydrophobicity, high molecular weight, and the 
presence of multiple aromatic rings, long alkyl chains, 
or multiple functional groups that can provide a variety 
of chemical interactions [162–164]. However, whether 
these small molecules are selective in regulating con-
densates remains unclear. Rational drug design may be a 
good strategy if the LLPS mechanism of the target is well 
studied. For example, allosteric inhibitors of Src homol-
ogy 2 domain-containing protein tyrosine phosphatase 2 
(SHP2) specifically bind to it to regulate its conformation 
and phase separation [165–167]. For disordered proteins, 
specific binding ligands can also be obtained through 
computer-aided drug design strategies or high-through-
put screening [168–170].

High‐throughput screening of phase‐separation 
modulators
High-throughput screening (HTS) is the preferred 
method when the target is poorly characterized, as this 
approach precludes structure-based drug design [171, 
172]. In addition, HTS can be utilized in conjunction 
with other strategies, such as fragment-based drug design 
(FBDD) and high-content imaging [173, 174]. Fragment 
discovery has been instrumental in the identification of 
novel targets that are challenging to engage with tradi-
tional chemical libraries, such as drug screening for IDPs. 

The most commonly used FBDD detection methods are 
nuclear magnetic resonance (NMR), mass spectrometry, 
and X-ray crystallography [175].

High-content imaging is the most commonly used and 
intuitive screening method for living cells. High-content 
imaging system can collect optical or fluorescent signals 
from living cells and these signals are further quantified 
and converted into numerical data [176]. PhaseScan is 
a droplet-based detection platform that enables rapid 
and high-resolution acquisition of multidimensional 
changes in biomolecular condensates [177]. This inno-
vative technology facilitates high-throughput analysis of 
protein phase behavior, which is essential for elucidating 
the assembly mechanisms of biomolecular condensates 
[177]. The platform can quantitatively characterize the 
effects of small molecules on phase separation, providing 
insights into how these molecules modulate biomolecu-
lar condensates [177]. Furthermore, PhaseScan is ver-
satile and can be applied to a wide range of condensate 
systems. It is capable of analyzing homo- and heterotypic 
phase separation of full-length proteins, as well as pro-
tein-RNA and protein–protein coacervates, and simple 
peptide systems [177].

Another noteworthy technology is phase‐separated 
condensate‐aided enrichment of biomolecular interac-
tions in test tubes (CEBIT), which has been developed 
for the purpose of testing the effects of compounds on 
protein interactions [178, 179]. By inducing the forma-
tion of condensates, CEBIT enriches the local concen-
tration of biomolecules within the test tube, significantly 
enhancing the likelihood of biomolecular interactions. 
This enrichment facilitates the detection and analysis of 
these interactions, which are often challenging to observe 
in bulk solutions [178]. CEBIT has broad applications 
in research areas such as protein–protein and protein-
RNA interactions, drug screening, and the investigation 
of cellular processes involving condensates. Through the 
implementation of CEBIT, a novel inhibitor of the p53/
human double minute 2 (HDM2) interaction, namely 
SUV39H1, was successfully identified from a compound 
library [178]. This technology represents a significant 
advancement in biomolecular research, offering a robust 
platform for exploring complex biological systems and 
developing novel therapeutic strategies.

Current experimental challenges in using 
and implementing c‑mods
The development and implementation of c-mods face 
several challenges that need to be addressed. Target 
validation and specificity is a significant challenge. Iden-
tifying and validating specific condensates as therapeu-
tic targets is complex due to their dynamic nature and 
involvement in multiple cellular processes. Multiomics 
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data, high-content imaging (HCI), and artificial intel-
ligence (AI) technologies can be employed to predict 
condensate formation and validate their role in disease. 
For example, a novel approach combining the analysis 
of various therapeutic target-identifying parameters via 
the multiomic AI-powered PandaOmics platform and 
the assessment of protein PPS propensity using FuzDrop 
is presented to prioritize human diseases for proteins 
phase separation-based interventions [180, 181]. Func-
tional validation in disease-relevant models is crucial to 
confirm the therapeutic potential of targeting specific 
condensates.

The elucidation of structure–activity relationships 
(SAR) within the context of c-mods presents a formida-
ble challenge, attributable to the profound complexity of 
intermolecular interactions that occur within conden-
sates. A substantial proportion of condensate constitu-
ents, such as IDRs, do not assume stable conformational 
structures, thereby complicating the application of struc-
ture-guided drug design paradigms. New techniques, 
such as DRPScore and AlphaFold 3, have the potential 
to predict potential binding sites and interactions with a 
high degree of accuracy, thereby providing a robust foun-
dation for the design of more efficacious c-mods [146, 
182].

Drug delivery and bioavailability constitute criti-
cal issues in the development of c-mods. Ensuring that 
c-mods effectively reach their target condensates within 
cellular environments represents a formidable challenge. 
The physicochemical attributes of c-mods, including 
solubility and permeability, necessitate optimization to 
enhance their overall bioavailability. The development 
of sophisticated drug delivery systems, such as nano-
particles or liposomes, holds promise in improving the 
cellular uptake and distribution of c-mods [183, 184]. 
Furthermore, the refinement of the chemical properties 
of c-mods through medicinal chemistry approaches can 
significantly augment their stability and bioavailability, 
thereby facilitating their therapeutic efficacy [62].

Off-target effects and toxicity constitute potential 
issues of concern in the context of c-mods. Given the 
extensive involvement of condensates in a myriad of 
cellular processes, c-mods may exert off-target effects, 
which in turn can precipitate unintended biological 
ramifications and toxicity. Thorough preclinical testing, 
encompassing both in vitro and in vivo studies, is indis-
pensable for the assessment of the safety and efficacy pro-
files of c-mods. The utilization of disease-relevant models 
and patient-derived cells can aid in the identification of 
potential off-target effects and facilitate the optimization 
of the therapeutic window.

Clinical translation represents a formidable obstacle 
in the development of c-mods. The transition of c-mods 

from the laboratory setting to clinical application necessi-
tates the surmounting of regulatory barriers and the une-
quivocal demonstration of clinical efficacy. The paucity 
of well-established biomarkers for condensate-related 
diseases poses a considerable challenge in quantifying the 
therapeutic response. Concerted collaborative endeavors 
among academia, industry, and regulatory agencies are 
imperative for the formulation of standardized protocols 
governing clinical trials. The identification and valida-
tion of biomarkers capable of monitoring the therapeutic 
response to c-mods will be of paramount importance for 
the successful clinical translation of these agents.

Conclusions
Understanding IDPs and biomolecular condensates pro-
vides an opportunity to design drugs with novel targeting 
strategies. Targeting LLPS offers a significant advantage 
in overcoming the limitations of traditional drug dis-
covery. Proteins that are involved in biomolecular con-
densates, like IDPs, frequently lack distinct structures, 
making conventional targeting methods challenging 
[185].

By emphasizing the modulation of phase separation 
itself, rather than individual protein structures, a wider 
range of potential therapeutic targets can be identi-
fied, which can overcome the limitations of traditional 
approaches. Initial evidence suggests that some approved 
pharmaceuticals may concentrate into condensates [186]. 
Secondly, high-content cellular screening has demon-
strated that certain drug-like molecules are capable of 
regulating condensate behaviors [187]. Thirdly, PTM 
enzymes represent the most promising drug targets, 
given that PTM exerts a pronounced regulatory influence 
on the formation and dissolution of condensates [188, 
189]. A number of small molecules are currently under-
going clinical trials and have been demonstrated to target 
condensates (Table 1).

Nevertheless, further research is required to address 
several outstanding issues. First and foremost, we need 
to verify whether the relevant functions of the protein 
depend on its phase separation ability. Elucidating the 
molecular mechanisms underlying biomolecular conden-
sates may facilitate the identification of novel therapeutic 
targets for clinical intervention. Moreover, biomolecu-
lar condensates represent a vast array of potential drug 
targets for a multitude of diseases. Specificity is a criti-
cal factor that must be taken into account. It remains 
unclear whether distinct condensates can be selectively 
targeted through the partitioning of a small molecule to 
a specific condensate. The druggability of these targets 
needs to be tested in future clinical trials. Degradation 
of scaffolds or IDPs can result in unexpected problems 
due to their involvement in many biological reactions. 
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The patho-mechanism of condensates is unclear in many 
neurodegenerative diseases and cancers, it is neces-
sary to clarify whether the abnormality of protein phase 
separation is a pathological consequence or a causative 
factor of the disease. Conducting further fundamental 
investigations into disease pathomechanisms is essen-
tial to designing drugs that target IDPs and biomolecular 
condensates.
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