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Abstract 

Background  Drug–disease association (DDA) prediction aims to identify potential links between drugs and diseases, 
facilitating the discovery of new therapeutic potentials and reducing the cost and time associated with traditional 
drug development. However, existing DDA prediction methods often overlook the global relational information pro-
vided by other biological entities, and the complex association structure between drug diseases, limiting the potential 
correlations of drug and disease embeddings.

Results  In this study, we propose HNF-DDA, a subgraph contrastive-driven transformer-style heterogeneous network 
embedding model for DDA prediction. Specifically, HNF-DDA adopts all-pairs message passing strategy to capture 
the global structure of the network, fully integrating multi-omics information. HNF-DDA also proposes the concept 
of subgraph contrastive learning to capture the local structure of drug-disease subgraphs, learning the high-order 
semantic information of nodes. Experimental results on two benchmark datasets demonstrate that HNF-DDA outper-
forms several state-of-the-art methods. Additionally, it shows superior performance across different dataset splitting 
schemes, indicating HNF-DDA’s capability to generalize to novel drug and disease categories. Case studies for breast 
cancer and prostate cancer reveal that 9 out of the top 10 predicted candidate drugs for breast cancer and 8 
out of the top 10 for prostate cancer have documented therapeutic effects.

Conclusions  HNF-DDA incorporates all-pairs message passing and subgraph capture strategies into heterogeneous 
network embedding, enabling effective learning of drug and disease representations enriched with heterogeneous 
information, while also demonstrating significant potential for applications in drug repositioning.
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Background
The development of a small molecule drug from 
design to market approval typically takes an average of 
15 years and approximately $2 billion in investment [1]. 
In addition to the high costs of research and develop-
ment, the clinical trial phase for new drugs has a failure 
rate as high as 90% [2]. Consequently, the number of 
newly approved drugs is insufficient to meet the needs 
of treating increasingly complex diseases. In 2022, the 
FDA approved only 37 novel drugs [3, 4]. New strate-
gies are urgently needed to reduce costs and shorten 
the development cycle to enhance drug discovery effi-
ciency. Compared to traditional drug discovery meth-
ods, drug repositioning identifies new indications for 
already approved clinical drugs, thereby avoiding the 
complex and costly drug design process and the high 
failure rates associated with clinical trials. Drug reposi-
tioning significantly improves drug discovery efficiency 
[5–11] and has been successfully applied in treating 
diseases such as COVID-19 [12] and Alzheimer’s dis-
ease [13]. With the advancement of computer technol-
ogy and the massive accumulation of biomedical data, 
many computational methods have been applied in the 
field of biomedicine [14–20], which computational vir-
tual screening for new drug indications has gradually 
gained attention [21, 22]. Utilizing machine learning 
models to predict reliable potential drug–disease asso-
ciations (DDAs) can substantially reduce the human 
and material costs associated with traditional experi-
ments [23–25]. Therefore, computational methods for 
predicting DDAs have become crucial for accelerating 
drug discovery.

Computational methods for predicting DDAs can be 
categorized into two types: drug-based and disease-based 
methods and multi-source heterogeneous data-based 
methods [26]. The first type predicts potential DDAs by 
constructing a drug-disease bipartite network and lever-
aging known drug–disease association patterns [27–31]. 
For instance, NCH-DDA [27] employs single-neighbor-
hood and multi-neighborhood feature extraction mod-
ules to extract critical features of drugs and diseases 
from both the drug-disease bipartite network and drug/
disease similarity networks in parallel, utilizing contras-
tive learning to obtain common features. DRAGNN [28] 
uses a graph attention mechanism to obtain dynamically 
allocated attention coefficients for nodes, enhancing the 
effectiveness of information gathering for target nodes. 
However, these methods have a limitation: the mecha-
nisms of drug action and disease pathology involve mul-
tiple biomolecules and signaling pathways. By focusing 
solely on the direct associations between drugs and dis-
eases, these methods neglect the biological mechanisms 
involving other entities, such as proteins, in DDAs.

The second category, multi-source heterogeneous 
data-based methods, integrates data from various bio-
logical entities to capture potential associations between 
drugs and diseases. These methods can be divided into 
three types based on data integration strategies: path-
based, network embedding-based, and knowledge graph 
embedding-based. Path-based methods use walk strate-
gies, such as random walks, to generate node sequences 
that capture relationships between different types of 
nodes and edges, thereby learning the representations of 
drug and disease nodes [32–34]. For example, DREAM-
walk [32] proposed a “semantic multilayer association 
induction” method, which uses random walks guided by 
semantic information to generate node sequences popu-
lated by drugs and diseases. FuHLDR [25] obtains low-
order features based on graph convolutional networks 
and high-order features based on meta-paths, then inte-
grates these high-order and low-order representations 
to determine a comprehensive representation of drugs 
and diseases. However, these meta-path-based features 
often rely on local information and have limited ability 
to extract higher-order structures, making it difficult to 
capture the complex interaction mechanisms between 
drugs and diseases. Network embedding-based meth-
ods construct a heterogeneous network containing vari-
ous biological entities and then use graph representation 
learning techniques to capture the network structure and 
learn node feature representations [35–39]. For example, 
PSGCN [35] proposed an end-to-end specific partner 
drug repositioning method based on graph convolutional 
networks. DDAGDL [24] incorporates complex biologi-
cal information into the topology of heterogeneous net-
works, effectively learning smooth representations of 
drugs and diseases through an attention mechanism. 
These methods use graph convolutional networks (GCN) 
or graph attention networks (GAT) to integrate informa-
tion from neighboring nodes but overlooks the all-pairs 
message passing between nodes [40]. Knowledge graph 
embedding-based methods view associations in the 
knowledge graph as transformations from source enti-
ties to target entities [41–43]. For example, RotatE [41] 
models relationships between entities as rotations in 
the complex plane. Although knowledge graph embed-
ding techniques can map entities and relationships in the 
graph into a low-dimensional vector space, this represen-
tation method may lose some structural and semantic 
information.

Considering the limitations of the existing methods, 
we propose a subgraph contrastive-driven transformer-
style heterogeneous network embedding model (HNF-
DDA) for DDA prediction (Fig.  1). First, we construct 
a heterogeneous network encompassing various bio-
logical entities and employ the attribute information of 
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these entities to obtain initial node embeddings using 
a biological large language model. Second, to learn the 
embeddings of drugs and diseases, HNF-DDA employs 
an all-pairs message passing heterogeneous network 
embedding model to capture global signal transmission 
between any nodes. A subgraph capture strategy is pro-
posed to extract high-order semantic structures within 
the heterogeneous network. Finally, an eXtreme Gradi-
ent Boosting (XGBoost) classifier [44, 45] is employed 
to predict the association probabilities between drugs 
and diseases. Experiments conducted on real-world 
datasets demonstrate that HNF-DDA outperforms 
existing methods in AUROC, AUPR, and Accuracy. 
Results from experiments with different dataset split-
ting schemes indicate that HNF-DDA has superior 
generalization capability for new drug and disease cate-
gories. Therefore, HNF-DDA not only effectively learns 
the representations of drugs and diseases that contain 
heterogeneous information but also shows greater 

potential for application in drug repositioning. This 
study makes the following contributions:

•	 To obtain multi-source biological entity informa-
tion, we employ a large-scale biological language 
model to generate initial embeddings for drug 
structures, protein sequences, diseases, and other 
biological entity attributes.

•	 To achieve global information transmission in het-
erogeneous networks, we utilize an all-pairs mes-
sage-passing Transformer-style network embed-
ding model that simulates signal transmission 
between any nodes, enabling adaptive integration 
of various biological entity information.

•	 To better capture the complex association mecha-
nisms between drugs and diseases, we propose a 
drug-disease subgraph contrastive strategy that 
ensures better connections between drugs and dis-
eases in the embedding space.

Fig. 1  The overview of the HNF-DDA framework. We input the SMILES of drugs, the sequences of proteins, and the textual descriptions of other 
biological entities into a biological language model to obtain the initial features of the nodes. The HNFormer module is then used to derive 
the embeddings of drugs and diseases. Next, we employ XGBoost for multiple independent training sessions. We average the predicted scores 
from these multiple runs and perform a ranking analysis based on the average scores
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•	 Experimental results demonstrate that HNF-DDA 
outperforms state-of-the-art methods. Additionally, 
split experiment results and case studies on breast 
cancer and prostate cancer confirm the model’s gen-
eralization and reliability, offering new insights for 
drug repositioning.

Results and discussions
Datasets
We evaluated our model on two benchmark datasets: 
KEGG [46] and HetioNet [34]. Both datasets contain 
drug, protein, disease, pathway entities and multi-type 
association information. The statistics of the two datasets 
are shown in Table 1.

Baselines
In this study, we compared HNF-DDA with 10 state-of-
the-art DDA prediction methods:

•	 RotatE [41]: This model introduces a new knowledge 
graph embedding method capable of modeling and 
inferring various relational patterns, including sym-
metric/antisymmetric, inversion, and composition, 
for learning drug and disease embeddings.

•	 QuatE [47]: This method introduces a more expres-
sive hypercomplex representation to model entities 
and relationships in knowledge graph embeddings, 
learning node embeddings.

•	 WalkPool [48]: This algorithm combines the expres-
sive power of topology-based heuristic algorithms 
with the feature learning capabilities of neural net-
works.

•	 SEAL [49]: The model proposes a novel decaying 
heuristic theory that unifies a broad range of heuris-
tic algorithms within a single framework. It demon-

strates that all these heuristic algorithms can be well-
approximated from local subgraphs, which retain 
rich information about the existence of links.

•	 ComplEx [50]: This method demonstrates that 
using the asymmetric Hermitian product as a rela-
tional operation can automatically understand the 
structural knowledge of large knowledge bases and 
address the link prediction problem.

•	 DTi2vec [51]: The model constructs a heterogeneous 
network and employs node embedding techniques 
to automatically generate features for each drug and 
target, subsequently using ensemble learning tech-
niques to identify drug-target interactions.

•	 NEWMIN [33]: This method proposes a network 
embedding framework within multiple networks to 
predict synergistic drug combinations.

•	 DDAGDL [24]: This method incorporates complex 
biological information into the topology of hetero-
geneous networks, effectively learning smooth repre-
sentations of drugs and diseases through an attention 
mechanism.

•	 DREAMwalk [32]: This model proposes a “semantic 
multi-layer guilt-by-association” method, which pre-
dicts DDAs at the drug-gene-disease level using the 
relational guilt principle “similar genes share similar 
functions.”

•	 FuHLDR [25]: This methods propose a novel graph 
representation learning model for drug repositioning 
by fusing higher and lower-order biological informa-
tion.

The baselines we selected can be categorized into 
random walk-based, graph neural network-based, and 
knowledge graph-based link prediction models. The ran-
dom walk-based models include FuHLDR, DREAMwalk, 
NEWMIN, and DTi2vec; the graph neural network-based 
models include DDAGDL, WalkPool, and SEAL; the 
knowledge graph embedding models, including Comp-
IEx, RotatE, and QuatE.

Experimental setting and evaluation metrics
We use known DDAs as positive samples and randomly 
sample an equal number of negative drug-disease pairs as 
negative samples. Then, we evaluate the performance of 
HNF-DDA and other methods on the two datasets using 
tenfold cross-validation repeated 10 times, with differ-
ent dataset splits for each experiment. Since the dimen-
sions of the initial features of different biological entities 
are different, we first convert the initial embedding to 
the same size of the input embedding, set the size of the 
input embedding to 512, and set the size of the hidden 
layer embedding to 32; the number of layers for the all-
pair message-passing encoder is 2 for the KEGG dataset 

Table 1  The statistics of KEGG and HetioNet

Datasets Nodes Numbers Edges Numbers

KEGG Drugs 6008 Drug–disease 2272

Diseases 1963 Disease–gene 6319

Genes 14,496 Drug–gene 11,860

Pathways 461 Gene–pathway 43,226

Pathway–pathway 2129

Disease–pathway 2573

Drug–pathway 10,274

HetioNet Drugs 1552 Drug–disease 755

Diseases 137 Disease–gene 27,977

Genes 20,945 Drug–gene 51,429

Pathways 1822 Gene–Gene 474,526

Gene–pathway 84,372
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and 1 for the HetioNet dataset; the weights of the learn-
ing objectives, α and β , are both 0.01 for KEGG, and 1.0 
and 0.1 for HetioNet, respectively.

The evaluation metrics include AUROC, AUPR, and 
Accuracy.

where TP is the number of samples correctly classified 
as positive, TN is the number of samples correctly classi-
fied as negative, FP is the number of samples incorrectly 
classified as positive, and FN is the number of samples 
incorrectly classified as negative. Accuracy is the propor-
tion of all samples that are correctly predicted. AUROC 
is the Area Under the TPR-FPR Curve plotted at different 
thresholds, and AUPR is the Area Under the Precision-
Recall Curve plotted at different thresholds. We compre-
hensively evaluate the performance of HNF-DDA using 
AUROC, AUPR, and Accuracy.

Performance comparison
To evaluate the performance of HNF-DDA, we com-
pared it with baselines on two datasets. Figure  2 shows 
the results of HNF-DDA and other baselines using ten-
fold cross-validation 10 times. HNF-DDA achieved an 
average accuracy of 0.8897, AUROC of 0.9507, and AUPR 
of 0.9491 on both biomedical heterogeneous network 
datasets, outperforming the best-performing baselines, 
DREAMwalk (average accuracy of 0.8704, AUROC of 
0.9382, AUPR of 0.9353), and FuHLDR (average accuracy 
of 0.8823, AUROC of 0.9462, AUPR of 0.9445). Therefore, 
HNF-DDA outperformed all compared baselines, achiev-
ing higher performance across all evaluation metrics. It is 
noteworthy that the KEGG dataset contains more drug, 
disease, and DDA data than the HetioNet dataset. HNF-
DDA’s performance improvement over the DREAMwalk 
and FuHLDR model in KEGG (accuracy by 3.5% and 
0.13%, AUROC by 2.2% and 0.185%, AUPR by 2.0% and 
0.195%) and in HetioNet (accuracy by 0.8% and 1.59%, 
AUROC by 1.1% and 0.14%, AUPR by 0.9% and 0.13%).

The best baselines DREAMwalk and FuHLDR both 
generate meta-paths based on the idea of random walks, 
thereby capturing the topological information of nodes 

(1)TPR = Recall =
TP

TP + FN

(2)FPR =
FP

FP + TN

(3)Precision =
TP

TP + FP

(4)Accuracy =
TP + TN

TP + TN + FP + FN

in the network. However, since random walks tend to 
frequently visit nodes that are close to each other, while 
the probability of visiting distant nodes is low, the cap-
tured topological structure is more biased towards 
locality. Moreover, random walks only rely on the topo-
logical structure of the network and cannot directly cap-
ture high-order semantics. The all-pair message-passing 
mechanism proposed by HNF-DDA can capture the 
potential relationship between any nodes and learn the 
global information of nodes in the network; the subgraph 
contrastive learning module proposed by HNF-DDA 
can capture the high-order semantic information of the 
drug-disease subgraph and learn the local information of 
nodes in the network; in addition, the individual attrib-
ute information of nodes is learned using a biological 
large language model. Therefore, HNF-DDA integrates 
multi-source heterogeneous information from multiple 
perspectives, captures the potential association between 
drugs and diseases, and improves the prediction perfor-
mance of DDA.

Predictive potential for unknown drug/disease classes
To evaluate the effectiveness of the model in real-world 
drug repositioning scenarios, we compare HNF-DDA 
with DDAGDL, DREAMwalk, and FuHLDR model, the 
best-performing baselines, through DDA split prediction 
experiments on the KEGG dataset (as shown in Fig.  3). 
First, we classified all drug and disease entities: drugs are 
classified according to their ATC codes, and diseases are 
classified according to the highest MeSH (Medical Sub-
ject Headings) term category. Then, based on the catego-
ries of drugs or diseases, we divide the DDAs into train, 
validation, and test sets in an approximate ratio of 8:1:1. 
This forced the model to predict the DDA probability for 
unknown drug or disease categories. We repeated the 
division 10 times to ensure that the data sets differed in 
each split.

As shown in Fig.  3, DREAMwalk outperforms 
the DDAGDL and FuHLDR in the split experiment. 
DREAMwalk with average accuracy of 0.7818, AUROC 
of 0.8868, and AUPR of 0.8976. HNF-DDA with aver-
age accuracy of 0.7961, AUROC of 0.9014, and AUPR 
of 0.8935. In the disease split experiment, DREAMwalk 
with average accuracy of 0.6190, AUROC of 0.6900, 
and AUPR of 0.7009. HNF-DDA with average accu-
racy of 0.6648, AUROC of 0.7955, and AUPR of 0.7829. 
These results demonstrate that HNF-DDA has greater 
potential to accurately predict unknown drug or dis-
ease categories in real-world scenarios compared to 
DREAMwalk. Additionally, as shown in Fig. 3, the dis-
tribution of prediction results across 10 experiments 
indicates that HNF-DDA has better stability in predic-
tion performance. Due to the insufficient number of 
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DDAs in the HetioNet dataset, which makes it difficult 
to perform category-based split experiments, no such 
experiments are conducted.

Ablation experiments
To comprehensively validate the predictive perfor-
mance of the HNF-DDA model, we conducted ablation 

experiments. We created the following variants targeting 
the heterogeneous network encoder and learning objec-
tive modules of the HNF-DDA model:

•	 w/o link: Remove the edge-level learning objective.
•	 w/o sub: Remove the subgraph-level learning 

objective.

Fig. 2  The drug–disease association prediction performances of each model on the KEGG and HetioNet. A DDA prediction performance on KEGG 
dataset. B DDA prediction performance on HetioNet dataset. All methods are repeated 10 times, and the black short lines in the figures represent 
error bars. The specific experimental data sets can be found in Additional file 2
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•	 w/o class: Remove the node-level learning objective.
•	 w/o init_feat: Replace the initial embeddings learned 

by the large language model with one-hot encoding.
•	 GAT​: Replace the all-pair message passing encoder 

with a GAT.
•	 GCN: Replace the all-pair message passing encoder 

with a GCN.

From the results in Fig. 4, HNF-DDA performs the best 
on the KEGG and HetioNet datasets. From the overall 
trend shown in Fig. 4, the changes in KEGG are relatively 
minor. As seen in Table 1, this is because the KEGG data-
set contains a larger number of known DDA samples for 
training, which allows the model to fully learn the drug–
disease association patterns. Therefore, the effects of 
different experimental conditions are minimal, and the 
performance metrics are higher than those of HetioNet.

Comparing the results of w/o link, w/o sub, w/o class, 
and w/o init_feat, it can be observed that the results of 
w/o sub and w/o init_feat are relatively worse. The w/o 
sub results indicate that the subgraph capture module 
proposed by HNF-DDA effectively mines the potential 

associations between drugs and diseases. The w/o init_
feat results suggest that HNF-DDA effectively integrates 
semantic information of biological entities and heteroge-
neous network structure, and replacing the semantic fea-
tures learned by the large language model may degrade 
the predictive performance. The comparison of GAT​ and 
GCN with HNF-DDA indicates that the all-pair mes-
sage passing encoder used by HNF-DDA can effectively 
capture signals between any pair of nodes in the hetero-
geneous network, integrating multiple sources of hetero-
geneous information comprehensively and enhance the 
prediction performance. These experimental results dem-
onstrate the effectiveness of the all-pair message passing 
and subgraph capture modules proposed by HNF-DDA.

Visualization of embeddings
We visualize the learned heterogeneous network node 
embeddings using T-sne [52]. Figure 5A and B show the 
visualization results of node embeddings on KEGG and 
HetioNet, respectively. Figure 5C and D show the visuali-
zation results of node embeddings on KEGG and Hetio-
Net after removing the subgraph capture module. In 

Fig. 3  Performance of DDAGDL, DREAMwalk, FuHLDR, and HNF-DDA based on split experiments in the dataset KEGG. A Performance of drug split 
experiment. B Performance of disease split experiment. Note: The bold numbers in the figure represent the average results of 10 experiments. The 
specific experimental data sets can be found in Additional file 2
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Fig. 5A, drug clusters (red) are relatively close to disease 
clusters (blue) and relatively far from pathway clusters 
(yellow), in Fig.  5C, after removing the subgraph mod-
ule, the pathway clusters (yellow) are situated between 
the drug clusters (red) and disease clusters (blue). Com-
pared to Fig. 5B, D removing the subgraph module, drug 
clusters (red) are relatively close to pathway clusters 
(yellow) and relatively far from disease clusters (blue). 
These results indicate that the subgraph capture module 
can uncover potential associations between drugs and 
diseases, bringing them closer in the embedding space, 
which benefits the improvement of downstream DDA 
prediction performance.

Case study
To further validate the reliability of DDA predictions 
by HNF-DDA in drug repositioning, we conduct litera-
ture verification on candidate drugs for breast cancer 
and prostate cancer from the KEGG dataset. Firstly, we 
average the prediction scores of all DDAs obtained from 
tenfold cross-validation repeated 10 times, ensuring dif-
ferent data splits for each tenfold cross-validation. Then, 
we sort the predicted scores of all unknown DDAs. 
Finally, we select the top 10 candidate drugs with the 
highest predicted scores for breast cancer and prostate 
cancer for literature validation analysis. Table 2 lists can-
didate drugs and the corresponding literature reports.

As shown in Table 2, among the top 10 candidate drugs 
for breast cancer predicted by HNF-DDA, 9 have sup-
porting literature evidence. For prostate cancer, 8 out of 
the top 10 candidate drugs have supporting literature 

evidence. Among the candidate drugs for breast cancer 
and prostate cancer, seven drugs overlap (including drugs 
for which there is no literature evidence). These drugs are 
either chemotherapy drugs that can treat various types of 
cancer (such as Etoposide and Vincristine sulfate) or can 
play a supportive role in managing cancer, or the symp-
toms and side effects related to its treatment. For example, 
Ephedrine is mainly used as a bronchodilator and decon-
gestant and can sometimes be used in supportive care 
to manage low blood pressure during surgery or chemo-
therapy; Desmopressin is primarily used to treat diabetes 
insipidus and certain bleeding disorders but can also be 
used to manage bleeding complications in cancer patients; 
Prednisone, a corticosteroid, is used to treat various dis-
eases, including inflammation, autoimmune diseases, and 
as part of certain chemotherapy regimens. The other three 
non-overlapping drugs also have specific related literature 
reports. These results further demonstrating the reliability 
of HNF-DDA in practical disease applications.

Discussion
HNF-DDA shows multiple improvements over exist-
ing SOTA models. It outperforms other models in pre-
diction accuracy in different scenarios of both datasets, 
including predictions in new drug or disease categories. 
This study highlights the importance of using large lan-
guage models and capturing both global and local struc-
tures of heterogeneous networks for DDA prediction. 
Although contrastive learning methods has shown crea-
tivity, the quality of negative samples limits the predic-
tion performance.

Fig. 4  Performance of HNF-DDA and different variants on KEGG and HetioNet datasets. The specific experimental data sets can be found 
in Additional file 2
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Although we use a subgraph capture strategy to pre-
serve the local structure of nodes and learn the high-level 
semantic information of nodes, the subgraph negative 
samples obtained through the random replacement strat-
egy have relatively low interference and discriminabil-
ity. Additionally, the classifier used in HNF-DDA is also 
trained on drug-disease negative pairs generated by ran-
dom sampling, which may result in false negative pairs. 
Therefore, in our future work, we plan to investigate 
sampling strategies for negative samples to obtain more 
realistic and reliable negative samples for more accurate 
DDA prediction.

Conclusions
We propose HNF-DDA, a subgraph contrast-driven 
transFormer-based Heterogeneous Network embed-
ding model for predicting drug–disease associations 
(DDAs). HNF-DDA utilizes an all-pair message pass-
ing strategy to preserve the global information of het-
erogeneous network nodes, enabling the integration of 
multi-omics data. It also proposes a subgraph capture 
module to retain the local structure of drug-disease 
subgraphs, learning the multiple high-level semantic 
information. Experimental results on two benchmark 
datasets demonstrate that HNF-DDA outperforms 10 
state-of-the-art methods. Dataset split experiments 

Fig. 5  HNF-DDA embedding visualization experiment. A Visualization on KEGG. B Visualization on HetioNet. C Visualization on KEGG 
without subgraph module. D Visualization on HetioNet without subgraph module
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reveal HNF-DDA’s potential in predicting DDAs for 
novel drug or disease categories. Ablation and visuali-
zation experiments indicate that the proposed all-pairs 
message passing and subgraph capturing strategies 
effectively reveal latent associations between drugs 
and diseases, enhancing DDA prediction performance. 
Finally, a literature validation analysis of the top 10 
candidate drugs for breast and prostate cancer con-
firms the reliability of HNF-DDA in identifying candi-
date drugs. In summary, our model, HNF-DDA, offers 
a powerful tool for drug-disease prediction.

Methods
The main objective of this paper is to predict associations 
between drugs and diseases. We propose a subgraph 
contrastive-driven transFormer-style Heterogeneous 
Network embedding model, HNF-DDA, as illustrated in 
Fig.  1. First, we construct a biomedical heterogeneous 
network and utilize a biological language model to learn 
the initial embeddings of the heterogeneous network 

nodes. Next, we learn the embeddings of drugs and dis-
eases using all-pairs message passing and subgraph cap-
ture strategies. Finally, we employ an XGBoost classifier 
to predict the association probabilities between drugs 
and diseases. Table 3 is a summary of all notations used 
in the “Methods” section.

Biomedical heterogeneous network
In this study, we construct a biomedical heterogeneous 
network using the interactions between biological enti-
ties. The nodes represent drugs, diseases, proteins, and 
other biological entities, while the edges represent the 
relationships between these entities. A schematic dia-
gram of this network is shown in Fig. 1.

A biomedical heterogeneous network is defined as an 
undirected network G = (V ,E,A,R) and N = |V | rep-
resent number of nodes. V = {v1, v2, . . . , vN } is the set 
of nodes in the network, where vi ∈ V  represents the i 
node in the network. E = { vi, vj |vi, vj ∈ V } ⊆ V × V  is 
the set of edges in the network, and each edge represents 

Table 2  Top 10 candidates of HNF-DDA for breast cancer and prostate cancer

Datasets Breast cancer Prostate cancer

Rank Drug Evidences Drug Evidences

1 Ephedrine [53–55] Somatropin [56, 57]

2 Etoposide [58–60] Prednisone [61–63]

3 Desmopressin [64–66] Doxorubicin hydrochloride [67, 68]

4 Mupirocin calcium [69] Budesonide

5 Vincristine sulfate [70–72] Desmopressin [73–75]

6 Somatropin Vinblastine sulfate [76]

7 Budesonide [77] Ephedrine

8 Cortisone acetate [78] Etoposide [79–81]

9 Pirbuterol [82] Paclitaxel [83–85]

10 Prednisone [86–88] Fluorouracil [89–91]

Table 3  Summary of all notations

Symbol Description Symbol Description

G Biomedical heterogeneous network H Feature Embedding Matrix

V Heterogeneous network node set t Node type

E Heterogeneous network edge set W Weight matrix

A Node attribute set B Bias matrix

R Node type set d Embedding feature dimensions

N Number of nodes z Node embedding feature vector

vi The i  node of network g Sampled from Gumbel distribution

ai Attribute feature of node vi T Temperature coefficient

τ(•) Node type mapping function b Learnable weight parameter

σ(•) Activation function φ(•) Positive Random Features (PRF)

Ŷ Predicted probability of the label C The intermediate node set

s The ending node (disease/drug) M Subgraph node set
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the interaction or association that exists between two 
nodes, where 

(
vi, vj

)
 represents the connection between 

nodes i and j . A = {a1, a2, . . . , aN } is the set of attrib-
utes of a node, including the SMILES structure of drugs, 
protein sequences, and biological text descriptions of 
diseases and other biological entities, where ai ∈ A rep-
resents the attribute feature associated with node vi . 
R is the set of type of a node, we describe the type of 
each node by a mapping function τ : V → R , namely: 
τ (vi) ∈ {Drug ,Protein,Disease,Others} , where τ (vi) rep-
resents the type of node vi . Additionally, we removed 
all DDAs from the biomedical heterogeneous network, 
allowing the integration of network structure and bio-
logical entity semantic information during the hetero-
geneous network embedding process without relying on 
drug-disease treatment information. These DDAs will 
serve as supervisory information for the DDA prediction 
task using the XGBoost classifier.

Computing initial embeddings
The biomedical heterogeneous network contains various 
types of biological entities. We employ specific model for 
each type of entity based on their attributes to extract 
semantic information, which serves as the initial embed-
dings for the nodes in the heterogeneous network. This 
approach integrates external knowledge with the struc-
ture of the heterogeneous network. These models utilized 
to compute the initial embeddings are outlined below:

•	 We utilize the SMILES as the attribute information 
for drugs. SMILES encodes the structure of a mol-
ecule into a string of characters, with each character 
representing information about atoms, bonds, and 
rings [92, 93]. This encoding provides a comprehen-
sive description of the molecular structure, including 
the connections between atoms, ring structures, and 
stereochemistry. We employ a language model for 
drug molecules, MolFormer [94], to obtain embed-
dings from the drug’s SMILES. MolFormer employs 
masked language modeling and combines linear 
attention Transformers with rotary embeddings.

•	 We utilize amino acid sequence data as the attrib-
ute information for proteins. This data comprises a 
sequence of characters that represent the specific 
amino acids constituting a protein and their sequential 
arrangement. Each amino acid is represented by a let-
ter, and the sequence can reflect the protein’s structure, 
function, and activity. We employ a pre-trained pro-
tein model, ProtBert [95], to obtain initial embeddings 
from the protein sequence data. ProtBert is based on 
the BERT [96] architecture and encodes amino acid 
sequences into token-level or sentence-level represen-

tations, which can be used for downstream protein 
tasks, such as contact prediction.

•	 We utilize biological text descriptions as attribute 
information for diseases and other biological entities. 
We employ a biomedical text language model, Biomed-
BERT [97], to obtain initial embeddings. BiomedBERT 
is based on the BERT architecture and is pre-trained 
from scratch using text abstracts from PubMed and 
full-text articles from PubMed Central as its corpus.

Finally, we obtain the initial embeddings 
Hinit = {Hinit

t ∈ R
|Vt |×dt } , where t ∈ {Drug ,Protein,Disease,Others} . 

Details of these models are in the Additional file 1.

Heterogeneous network embedding
This section introduces the heterogeneous network 
embedding (HNFormer) module of HNF-DDA. In this 
module, we employ a Transformer-style graph embedding 
method and design a subgraph capture strategy to learn the 
embeddings of heterogeneous network nodes.

All‑pair message passing encoder
The mechanisms of drug action and disease pathology 
involve various types of biomolecules and signaling path-
ways. Additionally, the known edges in the biological het-
erogeneous network are incomplete, and many potential 
associations exist between nodes. Therefore, signal trans-
mission in a heterogeneous network should not be limited 
to entities of the same type or local entity relationships. 
Inspired by NodeFormer [40], we employ an all-pairs mes-
sage passing encoder to enable signal transmission between 
any pair of entities in the heterogeneous network, ensur-
ing the full integration of multi-source heterogeneous 
information.

First, we utilize multiple MLPs to map the initial embed-
dings Hinit of different type node into the same space:

where H0
t ∈ R

|Vt |×d , t ∈ {Drug ,Protein,Disease,Others} , 
and σ(•) , Winit

t  , Binit
t  represent Exponential Linear Units 

activation function, weight, bias parameter, respectively. 
We concatenate the embeddings of different types to 
form the complete node embeddings H0 ∈ R

N×d:

where z0u ∈ H0 represents the u th node representation 
vector in the 0 layer, and 0 represents initial representa-
tion vector of heterogeneous network.

(5)H0
t = σ

(
Winit

t Hinit
t + Binit

t

)
,

(6)H0 =




H0
Drug

H0
Protein

H0
Disease

H0
Others


,
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Next, for any node u , we use z(l)u  to represent its cor-
responding representation vector at layer l . Thus, the 
update for the next layer z(l+1)

u  is:

where ku = W
(l)
K z

(l)
u  , qu = W

(l)
Q z

(l)
u  , vu = W

(l)
V z

(l)
u  are 

obtained from the feature transformation of the l th layer, 
and W (l)

K  , W (l)
Q  , and W (l)

V  are learnable parameters in l th 
layer. Equation  (7) can be viewed as a graph attention 
mechanism defined on a fully connected graph where all 
nodes are pairwise connected.

Because for any node, it is necessary to calculate the 
attention of the other N  nodes separately. Therefore, 
using a kernel method approximate the exponential-then-
dot operation, which is exp

(
aTb

)
= κ(a, b) ≈ φ(a)Tφ(b) , 

where φ : Rd → R
m is a low-dimensional feature map 

(RF). For example, the commonly used Positive Random 
Feature (PRF) [98] can be defined as:

This enables us to rewrite Eq. (7):

In this way, only one computation is needed, the total 
complexity is kept within O(N ).

The above process assumes that each edge has a con-
tinuous attention weight. To further consider the “dis-
cretization” of edges, for any node u , need to find an 
“optimal” set of neighbors in each layer for information 
passing. Therefore, treating the attention weights gener-
ated by N  nodes as a categorical distribution and then 
sample the neighbor set from it. Specifically, replacing 
the Softmax in Eq. (7) with Gumbel-Softmax:

Then, following the before approximate using RF with 
linear complexity:

(7)z(l+1)
u =

N∑

s=1

exp((qu)
Tks)∑N

w=1exp((qu)
Tkw)

• vs,

(8)

φ(x) =
exp(

−�x�22
2 )

√
m

[
exp

(
wT
1 x

)
, . . . , exp

(
wT
mx

)]
,

(9)

z(l+1)
u =

N∑

s=1

φ(qu)
Tφ(ks)∑N

w=1φ(qu)
Tφ(kw)

• vs =
φ(qu)

T
∑N

s=1φ(ks)v
T
s

(qu)
T
∑N

w=1φ(kw)

(10)

z(l+1)
u =

N∑

s=1

exp((qTu ku + gs)/T )
∑N

w=1exp((q
T
u kw + gw)/T )

• vs , gu ∼ Gumbel(0,1),

(11)z(l+1)
u ≈

N∑

s=1

φ

(
qu/

√
T

)T
φ

(
ks/

√
T

)egs/T

∑N
w=1φ

(
qu/

√
T

)T
φ

(
kw/

√
T

)egw/T •vs =
φ

(
qu/

√
T

)T∑N
s=1e

gs/T φ(ks/
√
T )vTs

(
qu/

√
T

)T∑N
w=1e

gw/T φ(kw/
√
T )

In addition to considering the message passing between 
all node pairs in the network, the topology of the hetero-
geneous network itself contains a lot of useful informa-
tion. During each layer of message passing, to strengthen 
the weights of the observed edges. Therefore, assigning 
a shared learnable weight to each edge, referred to as 
relational bias, and update the formula for each layer as 
follows:

where b(l) is the learnable weight parameter correspond-
ing to layer l , aus=1 indicates that there is an association 
between nodes u and s . We can obtain the last layer of 
node u embeddings zu ∈ H based on all-pair message 
passing.

Finally, we employ an MLP to predict the labels of the 
nodes:

where Ŷ ∈ R
N×|R| represent the predicted probability of 

the label.

Subgraph structure capture
Drugs act on multiple target proteins and participate in 
various functional pathways, working together to treat 
diseases. Therefore, in a heterogeneous network, the 
relationships between drugs, diseases, and other bio-
logical entities collectively form higher-order subgraph 
structures. In addition to considering signal transmission 
between nodes in the heterogeneous network, it is cru-
cial to preserve the contextual semantic information con-
tained in the high-order structures of the heterogeneous 
network. While existing methods often rely on meta-path 
approaches to explore high-order structures, they may 
fall short in capturing rich semantics and extracting high-
order patterns [99]: (1) Meta paths often focus on single 
relationships, ignoring the multiple associations between 
different entities; (2) Starting from a source node, the 
number of nodes that a meta path can reach is too large, 
resulting in the extracted structure lacking restrictions 
and containing insufficient semantic information.

Inspired by CPT-HG [99], we recognize that the mech-
anisms of drug action and disease pathology involve 

(12)z(l+1)
u ← z(l+1)

u +
∑

s,aus=1

σ(b(l)) • vs,

(13)Ŷ = MLP(H)
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various types of biomolecules and signaling pathways. 
Consequently, drugs, diseases, and other biological enti-
ties collectively form subgraph with intricate high-order 
structures. To address this, we construct positive and 
negative subgraphs and leverage contrastive learning to 
capture the intricate subgraph structures and subtle con-
textual semantic information within the heterogeneous 
network.

Specifically, given a drug (disease) node as the starting 
node u and a disease (drug) node as the ending node s , 
we take the common first-order neighbors between the 
drug and the disease as the intermediate node set C . We 
construct subgraphs using only the first-order common 
neighbors of drugs and diseases as intermediate nodes, 
capturing the strong associations between drugs and 
diseases, and enhancing the structural constraints of the 
subgraph to include rich high-level semantic informa-
tion. Therefore, the positive subgraph corresponding to 
node u is:

Then, we randomly replace half of the elements in the 
intermediate node set C to obtain a new set C− , thus we 
can obtain the negative subgraph for node u:

Finally, we apply the concept of contrastive learn-
ing to ensure that node u is closer to its positive sub-
graph embedding and farther from its negative subgraph 
embedding. The subgraph-level loss objective is defined 
as:

where Vdd is the set of drug and disease nodes, and f (•) 
denotes the pooling function (e.g., average pooling) that 
gets the subgraph embeddings.

Learning objectives
Given the node labels Y  and the predicted labels Ŷ  , the 
node-level supervised loss is defined as:

where I[•] is an indicator function. ŷv,r represent the 
probability that the v th node belongs to the class r.

Treating the attention estimates of each layer in the 
model as a categorical distribution, with the observed 
edges as samples. Thus, we define an edge-level loss 
objective using maximum likelihood estimation:

(14)M+
u = {s} ∪ C

(15)M−
u = {s} ∪ C−

(16)Lsub = −
1∣∣Vdd

∣∣
∑

u∈Vdd

exp
(
Huf

(
M+

u

))

exp
(
Huf

(
M

+
u

))
+ exp

(
Huf

(
M

−
u

)) ,

(17)Ln = −
1

N

∑

v∈V

|R|∑

r=1

I[yv = r]logŷv,r ,

where du represents the in-degree of node u , and π(l)
us  rep-

resents the predicted probability for edge (u, s) at the l th 
layer of the model.

The final objective is the sum of the node-level, edge-
level, and subgraph-level loss:

where α and β are weight parameters.

Drug–disease association prediction
After obtaining the embeddings of the heterogeneous 
network nodes, we utilize the known DDAs as super-
vision information and predict DDA scores based on 
drug and disease embeddings using the XGBoost model. 
To enhance the stability of the prediction results, we 
conduct multiple independent training sessions with 
XGBoost and average the resulting prediction scores.

XGBoost (eXtreme Gradient Boosting) is a powerful 
and widely used machine learning algorithm, primarily 
designed for supervised learning tasks such as classifica-
tion and regression [100]. XGBoost is an implementation 
of gradient boosting machines (GBM), which are a type of 
ensemble learning method. Ensemble learning methods 
combine multiple base learners (in this case, decision trees) 
to improve overall performance. Gradient boosting, spe-
cifically, builds models sequentially, where each new model 
attempts to correct the errors made by the previous models. 
XGBoost has gained popularity due to its high performance, 
speed, and scalability. Details of the training procedure and 
the parameters of XGBoost are in the Additional file 1.
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(18)
Le = − 1

NL

∑L
l=1
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1
du
logπ
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π
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T∑N
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Additional file 2. Figures experiments data. This file contains the specific 
data of Figs. 2, 3 and 4.
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