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Abstract 

Background  While various models and computational tools have been proposed for structure and property analysis 
of molecules, generating molecules that conform to all desired structures and properties remains a challenge.

Results  We introduce a multi-constraint molecular generation large language model, TSMMG, which, akin to a stu-
dent, incorporates knowledge from various small models and tools, namely, the “teachers.” To train TSMMG, we 
construct a large set of text-molecule pairs by extracting molecular knowledge from these “teachers,” enabling it 
to generate novel molecules that conform to the descriptions through various text prompts. We experimentally show 
that TSMMG remarkably performs in generating molecules that meet complex property requirements described 
in natural language across two-, three-, and four-constraint tasks, with an average molecular validity of over 99% 
and success ratio of 82.58%, 68.03%, and 67.48%, respectively. The model also exhibits adaptability through zero-shot 
testing, creating molecules that satisfy combinations of properties that have not been encountered. It can compre-
hend text inputs with various language styles, extending beyond the confines of outlined prompts.

Conclusions  TSMMG presents an effective model for multi-constraint molecular generation using natural language. 
This framework is not only applicable to drug discovery but also serves as a reference for other related fields.

Keywords  Molecular generation, Large language model, Multi-constraint

*Correspondence:
Longyue Wang
vincentwang0229@gmail.com
Yuansheng Liu
yuanshengliu@hnu.edu.cn
Xiangxiang Zeng
xzeng@hnu.edu.cn
1 College of Information Science and Engineering, Hunan University, 
Changsha 410082, Hunan, China
2 The Interdisciplinary Graduate Program in Integrative Biotechnology, 
Yonsei University, Incheon 21983, Seoul, Korea
3 School of Informatics, Yunnan Normal University, Kunming 650500, 
Yunnan, China
4 Department of Computer Science, University of Tsukuba, 
Tsukuba 3058577, Japan
5 Research Institute of Intelligent Complex Systems, Fudan University, 
Shanghai 200433, China
6 Shanghai AI Laboratory, Shanghai 200232, China

7 Centre for Artificial Intelligence Driven Drug Discovery, Faculty 
of Applied Science, Macao Polytechnic University, Macao SAR, China
8 School of Informatics, Xiamen University, Xiamen, China
9 AI for Life Sciences Lab, Tencent, Shenzhen, China
10 Alibaba International Digital Commerce, Hangzhou, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12915-025-02200-3&domain=pdf


Page 2 of 17Zhou et al. BMC Biology          (2025) 23:105 

Background
The development and application of molecular genera-
tion models play an essential role in the field of artificial 
intelligence for drug discovery (AIDD). Molecular gen-
eration models are instrumental in addressing the chal-
lenges and complexities associated with the identification 
and design of novel therapeutic compounds. In contrast 
to traditional virtual screening approaches, involving the 
sift of desired molecules from existing libraries, these 
innovative models are engineered to directly generate 
novel molecules. Their ability to navigate vast chemi-
cal spaces, optimize lead compounds, and facilitate de 
novo design positions them as indispensable tools in the 
pursuit of novel and effective therapeutic interventions 
[1–7]. These models not only exhibit the ability to gen-
erate chemically valid molecules that precisely adhere to 
the requirements of molecular analysis tools [8, 9], but 
they also excel in the generation of molecules that meet 
specific constraints, like quantitative estimate of drug-
likeness (QED) and molecular hydrophobicity (LogP) [10, 
11].

However, a primary challenge in the realm of drug 
discovery lies in identifying molecules that conform 
to a multitude of constraints, including binding affin-
ity, LogP, QED, synthetic accessibility (SA), and toxic-
ity, rather than merely generating compounds that are 
chemically valid or solely meeting specific criteria [12, 
13]. Several works have been introduced to address this 
challenge, presenting methodologies capable of generat-
ing molecules that adhere to a spectrum of concurrent 
condition constraints. For instance, Li et  al. introduced 
a conditional generative model proficient in generat-
ing molecules that meet both SA and QED criteria, even 
yielding dual-target inhibitors for JNK3 and GSK3 [14]. 
Jin et al. achieved this feat by extracting diverse substruc-
tures with varying properties and reassembling them to 
produce molecules satisfying QED, SA, and the inhibi-
tion of both JNK3 and GSK3 [15]. Bagal et al. employed 
a transformer decoder architecture, treating constraint 
conditions as conditional codes, to explore the genera-
tion of molecules under various combinations of multi-
ple constraints, including LogP, TPSA (total polar surface 
area), and SA [16]. Wang et al. utilized a combination of a 
conditional transformer, knowledge distillation, and rein-
forcement learning to generate molecules with activity 
against DRD2, while also ensuring adherence to QED and 
SA criteria [12].

Although significant progress has been made in prior 
endeavors, it is important to acknowledge that multi-
constraint molecular generation methods still suffer 
from several noteworthy limitations, which hinder their 
practical applicability. These limitations undermine the 
overall effectiveness and efficiency of these methods in 

generating molecules that simultaneously meet diverse 
sets of constraints in drug discovery. These limitations 
fall into the following points: (1) Current multi-constraint 
molecular generation methods heavily rely on a narrow 
set of constraints. These methods predominantly focus 
on specific molecular properties, such as LogP, QED, SA, 
DRD2, JNK3, and GSK3. As a result, they may overlook 
other crucial aspects like substructures, bioavailability, 
and toxicity. The restricted range of constraints limits the 
comprehensive exploration of diverse chemical proper-
ties, potentially hindering the discovery and optimization 
of molecules with broader applicability in drug discovery 
and related domains. (2) These methods often require 
extensive fine-tuning when applied to different tasks. 
They tend to generate molecules that closely adhere to 
the feature distribution of the training dataset. As a con-
sequence, adapting these models to changes in the target 
space or applying them to diverse tasks necessitates sig-
nificant retraining. This inflexibility makes the models 
less adaptable, introducing a substantial burden in terms 
of computational resources and time when confronted 
with variations in the application context. (3) They often 
involve intricate designs. The complexity of the mod-
els and algorithms used can be a significant obstacle in 
their practical application. Users may find it challenging 
to understand and navigate the complexities of the meth-
ods, impacting their usability. Improving the simplicity of 
these models is essential to make them more accessible 
and applicable in real-world scenarios, especially in drug 
discovery and related domains.

To address the challenges, we introduce the teacher-
student-based multi-constraint molecular generation 
(TSMMG) model, a natural language-based multi-con-
straint molecular generation approach. TSMMG offers 
several pivotal advantages: (1) Broader properties and 
high scalability: In addition to the constraints often 
focused on by existing methods, we also consider molec-
ular substructures and ADMET properties. Based on 
the concept of knowledge distillation, our approach 
presents a versatile data generation framework that lev-
erages a range of molecular tools and advanced models 
to selectively extract molecules with diverse properties 
from publicly available molecular libraries. This para-
digm provides a highly scalable approach, facilitating the 
seamless absorption of molecular knowledge beyond the 
scope of this paper. Moreover, this approach can be eas-
ily extended to other domains, such as materials science. 
(2) Multi-task capability: Harnessing the capabilities of 
large language models, we train TSMMG across multi-
ple tasks. By formulating distinct prompts, we delineate 
unique molecular spaces without the need for repetitive 
fine-tuning. (3) Simple architecture: TSMMG adopts a 
transformer-based decoder architecture. This design, 
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characterized by its simplicity, eliminates the need for 
intricate preprocessing of molecular data.

To showcase the expressive capabilities of our proposed 
model, we meticulously designed 16 sets of experiments 
for multi-constraint molecular generation. These experi-
ments covered a spectrum of tasks, including molecular 
substructures, physicochemical properties, affinity with 
targets, and ADMET properties. Our findings from these 
experiments are compelling: TSMMG not only yields 
over 99% of legally valid molecules based on natural lan-
guage instructions but also, notably, a substantial pro-
portion of these molecules impeccably aligns with the 
specified properties in the textual descriptions. Further-
more, we conducted a noteworthy case study involving 
a zero-shot 5-constraint task. In this scenario, TSMMG 
successfully produced molecules capable of simultaneous 
binding to EP2 and EP4, showcasing favorable drug-like-
ness and synthetic accessibility, along with the ability to 
penetrate the blood-brain barrier. This case study serves 
as an additional testament to the vast potential embed-
ded in TSMMG. Additionally, our model demonstrated 
its prowess in understanding natural language beyond the 
prompts outlined in this paper, as empirically validated. 
This expanded capability further solidifies the model’s 
practical applicability. Moreover, we observed that inte-
grating molecules generated by our model enhances the 
teacher model’s performance. This collaborative synergy 
fosters continuous improvement between the teacher 
and student models, underscoring the model’s adaptabil-
ity and potential for iterative refinement.

Results
TSMMG approach
As shown in Fig. 1, TSMMG process involves the follow-
ing steps: (1) First, a substantial dataset of molecules is 
collected from publicly available molecular libraries. This 
dataset undergoes analysis by advanced molecular pars-
ing tools and models, which referred to as “teachers.” 
These teachers extract extensive information, encom-
passing structural details, physicochemical properties, 
binding affinities to various targets, and other pertinent 
attributes for each molecule. The resulting knowledge is 
then organized into text descriptions, which are paired 
with the corresponding molecules. (2) Second, the “stu-
dent” model, TSMMG, is trained using the knowledge 
obtained in the previous step. TSMMG is designed to 
create a direct mapping from natural language to molec-
ular language. By absorbing a diverse range of knowledge 
expressed in natural language, the model acquires the 
capability to generate molecules that possess the speci-
fied properties outlined in the text. It is worth noting that 
TSMMG undergoes pre-training on a vast corpus of pure 
text, enabling it to effectively understand and interpret 

natural language. (3) When presented with a text descrip-
tion that includes multiple constraints, TSMMG can 
generate entirely novel molecules that fulfill these textual 
descriptions. In doing so, it effectively bridges the gap 
between natural language and molecular language for the 
purpose of multi-constraint molecular generation.

Multi‑constraint task
Task setting
To comprehensively demonstrate the efficacy of the 
TSMMG model, we categorized multi-constraint tasks 
into three types, each based on different levels of com-
plexity: two-constraint molecular generation, three-
constraint molecular generation, and four-constraint 
molecular generation. Each of these three task categories 
comprises eight one-constraint tasks. These one-con-
straint tasks encompass:

•	 Task 1. Specifying a functional group (FG).
•	 Task 2. Specifying the level of hydrophilicity and 

hydrophobicity ( LogP = 1).
•	 Task 3. Specifying the level of quantitative estimate of 

drug-likeness ( QED > 0.6).
•	 Task 4. Specifying the level of synthetic accessibility 

score ( SAs < 4).
•	 Task 5. Generate molecules with high affinity for the 

dopamine type 2 receptor ( DRD2 > 0.5).
•	 Task 6. Generate molecules with high affinity for the 

glycogen synthase kinase-3 beta ( GSK3 > 0.5).
•	 Task 7. Generate molecules capable of crossing the 

blood-brain barrier ( BBB > 0.5).
•	 Task 8. Generate molecules that can be absorbed by 

the human small intestine ( HIA > 0.5).

Among these, task 1 is classified as a structure task, while 
tasks 2, 3, and 4 are physicochemical property tasks. 
Tasks 5 and 6 fall under activity tasks, and tasks 7 and 
8 are ADMET property tasks. We employ the “+” sym-
bol to concatenate multiple one-constraint tasks, thereby 
representing multi-constraint tasks. Within the two-con-
straint tasks, we considered eight subtasks, combining 
structure tasks with individual physicochemical prop-
erty tasks, activity tasks, and ADMET property tasks. 
These include (1) FG+FG, 2FG for short; (2) FG+LogP; 
(3) FG+QED; (4) FG+SAs; (5) FG+DRD2; (6) FG+GSK3; 
(7) FG+BBB; and (8) FG+HIA. In the three-constraint 
tasks, we explored subtasks such as (1) FG+DRD2+QED; 
(2) FG+GSK3+QED; (3) FG+BBB+QED; and (4) 
FG+HIA+QED. The four-constraint tasks include (1) 
FG+DRD2+QED+SAs; (2) FG+GSK3+QED+SAs; (3) 
FG+BBB+QED+SAs; and (4) FG+HIA+QED+SAs. It 
is essential to emphasize that all these tasks were com-
pleted within a single model, employing different natural 
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language prompts. The model underwent comprehensive 
training in a unified process, eliminating the need for 
repetitive fine-tuning. The specific prompts used in these 
experiments are detailed in Table 1.

Performance analysis
The experimental results, depicted in Fig.  2A and B, 
unveil several noteworthy findings: Validity: The model 
demonstrates a remarkable ability to generate mol-
ecules that adhere to the syntax rules of SMILES (Sim-
plified Molecular Input Line Entry System) [17], with 
an impressive average validity rate of 99.87%, 99.89%, 
and 99.87% for two-constraint tasks, three-constraint 
tasks, and four-constraint tasks, respectively. This 

underscores the model’s proficiency in consistently 
producing grammatically correct molecules. Unique-
ness: Most generated molecules are unique, with an 
outstanding average uniqueness rate of 90.27%, 81.2%, 
and 81.89% for two-constraint tasks, three-constraint 
tasks, and four-constraint tasks, respectively. From a 
specific task perspective, the uniqueness of tasks related 
to DRD2 and GSK3 is relatively low, averaging less than 
70%, while other tasks score above 90%. In the next sec-
tion, we will analyze the reasons behind this situation. 
Overall, the model consistently generates largely dis-
tinct molecules across various tasks. Novelty: The aver-
age novelty of the generated molecules stands at 92.79%, 
87.6%, and 87.87%. Similar to uniqueness, tasks related 
to DRD2 and GSK3, such as FG+DRD2+QED (82.76%), 

Fig. 1  The process of TSMMG is illustrated as follows: A We use “teacher” models to analyze molecules and obtain their properties, such as structural 
information, physicochemical properties, and binding affinities. These properties are then converted into natural language. The natural language 
descriptions and molecules form a text-molecule paired dataset. B The “student” model, TSMMG, is trained on this text-molecule paired dataset 
to map descriptions to molecular structures. Pre-training on a large text corpus helps it understand natural language. C TSMMG can generate new 
molecules based on text descriptions with multiple constraints, linking natural language to molecular generation
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FG+GSK3+QED (82.44%), FG+DRD2+QED+SA 
(83.9%), and FG+GSK3+QED+SA (83.14%), have rela-
tively lower novelty scores, while other tasks have novelty 
scores exceeding 90%. In general, the model demon-
strates a capacity to generate innovative molecules for 
most of the tasks at hand. Diversity: Most generated mol-
ecules exhibit notable structural differences, as reflected 
in the outstanding average diversity score of 90.47, 89.3, 
and 89.37. Similarly, tasks related to DRD2 and GSK3 
exhibit lower diversity compared to other tasks. Success 
ratio: The average success ratio stands at 82.58%, 68.03%, 
and 67.48% for two-constraint tasks, three-constraint 
tasks, and four-constraint tasks, respectively, which dem-
onstrates the model’s efficacy in generating novel mole-
cules that effectively meet all requirements specified by 
natural language.

Impact of FGs on performance
An important distinction from previous methods is that 
we consider functional groups (FG) as an additional con-
straint, allowing for more precise control over the direc-
tion of generation. Given the relatively low uniqueness in 
tasks related to DRD2 and GSK3, we use the FG+DRD2 
task as an example to further discuss the impact of FG on 
generation results.

Firstly, we analyze the reasons for the low uniqueness 
(68.48) of the FG+DRD2 task. In this task, our prompt 

template is “The molecule contains [FG]. It is active to 
DRD2.”  We randomly selected 1000 FGs to form 1000 
prompts, each generating 5 molecules, totaling 5000 mol-
ecules. The only difference between each prompt is the 
FG, so we group according to the number of unique mol-
ecules generated by each prompt and then extract the FG 
from these prompts for analysis. As shown in Fig. 2C(1), 
we see that the number of FGs that led to the generation 
of 1, 2, 3, 4, and 5 unique molecules were 195, 287, 252, 
184, and 82, respectively. Over 80% of the FG-associated 
prompts can generate two or more unique molecules, 
with 82 FG-associated prompts each generating 5 com-
pletely different molecules. A significant portion of FG-
associated prompts tend to generate identical molecules. 
We speculate that the main reason for this is the incon-
sistent frequency of these FGs in the training set, caus-
ing the model to be unable to effectively learn the larger 
molecular space corresponding to the FG. In light of 
this speculation, we grouped these 1000 FGs according 
to the number of unique molecules generated and cal-
culated the average frequency of the FGs in the train-
ing set within each group. As shown in Fig. 2C(2), this is 
basically consistent with our speculation. Except for the 
group generating one unique number of molecules as 
group 1, as the number of unique molecules generated 
increases, the frequency of the corresponding group’s 
FG in the training set also increases, indicating that these 

Table 1  The prompts we use in this work. [FG], [FG1], and [FG2] refer to any functional group, and [VALUE] refers to a real number

Task Prompt

2FG The molecule contains [FG1],[FG2]

FG+LogP The molecule contains [FG]. Its LogP is [VALUE]

FG+QED The molecule contains [FG]. It has a high QED score

FG+SA The molecule contains [FG]. It has good synthetic accessibility

FG+DRD2 The molecule contains [FG]. It is active to DRD2

FG+GSK3 The molecule contains [FG]. It is active to GSK3

FG+BBB The molecule contains [FG]. It can pass through the blood-brain barrier

FG+HIA The molecule contains [FG]. It can be absorbed by human intestinal

FG+DRD2+QED The molecule contains [FG]. It is active to DRD2. It has a high QED score

FG+GSK3+QED The molecule contains [FG]. It is active to GSK3. It has a high QED score

FG+BBB+QED The molecule contains [FG]. It can pass through the blood-brain barrier. It has a high QED score

FG+HIA+QED The molecule contains [FG]. It can be absorbed by human intestinal. It has a high QED score

FG+DRD2+QED+SAs The molecule contains [FG]. It is active to DRD2. It has a high QED score. It has good synthetic accessibility

FG+GSK3+QED+SAs The molecule contains [FG]. It is active to GSK3. It has a high QED score. It has good synthetic accessibility

FG+BBB+QED+SAs The molecule contains [FG]. It can pass through the blood-brain barrier. It has a high QED score. It has good synthetic acces-
sibility

FG+HIA+QED+SAs The molecule contains [FG]. It can be absorbed by human intestinal. It has a high QED score. It has good synthetic accessibility

BTK The molecule can bind to BTK

FGFR4 The molecule can bind to FGFR4

KPCD3 The molecule can bind to KPCD3

3CL The molecule can bind to 3CL
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Fig. 2  A Experimental results for TSMMG across various tasks, encompassing 8 two-constraint tasks, 4 three-constraint tasks, and 4 four-constraint 
tasks. B Average experimental results on two-constraint, three-constraint, and four-constraint tasks. C FG analysis for task FG+DRD2. D Shows 
the comparison of the success ratio SR (nFG) without considering whether FG matches and the success ratio considering whether FG matches 
under different constraint tasks. E Shows the impact of different temperatures on the model
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FGs can be better trained. The average frequency of the 
FGs in the group with one unique number is slightly 
higher than that of the group with a 2 unique number, 
and lower than the other groups, which we assume is 
an acceptable bias. We then checked the frequency of 
the FGs in the DRD2 related training set. As shown in 
Fig.  2C(3), a considerable portion of functional groups 
(FGs) did not appear in the training set related to DRD2. 
Despite this, our model still demonstrates the capability 
to generate correct molecules.

Further, we consider the ratio of molecules that simul-
taneously satisfy valid, unique, novelty, and success 
(VUNS) criteria generated by different groups. As shown 
in Fig. 2C(4), combined with Fig. 2C(2) and C(3), as the 
frequency of FGs in the training set increases, the model 
is more capable of generating more novel molecules that 
meet the constraints. In group 5, the average frequency 
of this group’s FG in all training set is 1339, and the ratio 
of VUNS molecules generated by these FG-associated 
prompts is as high as 91%.

Given the significant impact of FG on the success ratio, 
we calculated the success ratio without considering FG 
matching, abbreviated as SR (nFG). For example, for 
the FG+DRD2+QED+SA task, SR (nFG) only considers 
whether DRD2, QED, and SA meet the constraints. The 
results are shown in Fig.  2D. It can be seen that in the 
two-constraint task, three-constraint task, and four-con-
straint task, the success ratio without considering FG is 
13.06%, 16.51%, and 16.76% higher than the success ratio 
considering FG, respectively.

The above observations suggest that as more molecules 
and FGs are added to the training set, our model should 
be able to achieve more significant performance.

Effect of temperature on performance
During the inference process of large language models, 
temperature is a parameter of great interest. A lower 
temperature implies lower randomness, while a higher 
temperature means the model has greater freedom. We 
conducted tests on all tasks by setting different tempera-
tures. Figure  2E shows the average performance of all 
tasks when the temperature is set to 0.5, 0.75, 1.0, 1.25, 
and 1.5, respectively. It can be observed that as the tem-
perature increases, the ability to generate valid molecules 
remains virtually unchanged, still maintaining above 99%. 
Novelty and diversity also remain almost unchanged. 
However, unique and SR show a noticeable increase or 
decrease. Unique increases from 73.42 to 90.04%, an 
improvement of approximately 17%, indicating that as 
the temperature increases, the model can generate more 
unique molecules. At the same time, SR decreases from 
83.03 to 61.94%, a reduction of about 21%. The decrease 
in SR is roughly consistent with the increase in unique, 

which means that although increasing the temperature 
from 0.5 to 1.5 generates 17% more unique molecules, 
most of them do not satisfy all constraint conditions.

Case study of a five‑constraint molecular generation
Given the availability of corresponding predictors and 
a sufficiently large molecular library, it is theoretically 
feasible to construct training sets for any combination 
of desired molecular properties. This would enable the 
model to generate molecules that encompass a wide 
range of attributes. However, the challenge arises as the 
number of properties and their combinations increases, 
resulting in an exponential growth in the total number 
of possible property combinations. The exhaustive cov-
erage of all these combinations becomes impractical. To 
address this challenge, we embarked on an investiga-
tion to determine if a model could effectively generate 
molecules when trained using individual properties but 
tested on arbitrary combinations. This research aimed to 
assess the model’s adaptability to novel scenarios. To this 
end, we designed a task that entailed the generation of 
molecules exhibiting high drug-likeness, good synthetic 
accessibility, blood-brain barrier permeability, and the 
ability to bind to both the prostaglandin E2 receptor EP2 
subtype [18] and prostaglandin E receptor EP4 [19]. The 
input prompt constructed for this task was: “The mole-
cule exhibits a high QED score, good synthetic accessibil-
ity. It can pass through the blood-brain barrier and binds 
to both Prostanoid EP2 and EP4 receptors.”  During the 
training phase, each molecule was associated with only 
one property, meaning the model was exposed to mol-
ecules corresponding to each of the five properties within 
this prompt. However, the model had not encountered 
molecules that simultaneously met all five of these prop-
erties, and indeed, it had not seen molecules that met 
even two properties explicitly simultaneously.

This task presents a formidable challenge from multi-
ple perspectives. From the model’s input perspective, the 
model encounters significantly longer input text, a depar-
ture from its prior training data. In terms of molecular 
properties, the model must not only comprehend the 
mapping of individual properties to molecular spaces 
but also grasp the complex mapping of multiple prop-
erties from a single property mapping. Surprisingly, the 
model proves to be up to the task, successfully generat-
ing molecules that simultaneously satisfy all the condi-
tion constraints. As illustrated in Fig. 3, we showcase four 
molecules that meet all the property requirements speci-
fied in the textual description. To validate their compat-
ibility with the receptors of EP2 (PDB ID: 7CX2) and EP4 
(PDB ID: 5YWY), we employed UCSF Chimera [20] for 
molecular docking preparation and UCSF Dock6 [21] to 
conduct molecular docking. Finally, we used PLIP [22] 
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and PyMOL [23] for visualizing the docking results. The 
docking results reveal that these molecules effectively fit 
into the ligands and establish hydrogen bonds with differ-
ent residues, demonstrating their potential for fulfilling 
the specified molecular properties.

This experimental outcome holds profound signifi-
cance, as it demonstrates the model’s robust capability to 
generate molecules that satisfy complex multi-constraints 
during zero-shot testing, even when initially trained with 
one-constraint data. This versatility underscores the 
model’s adaptability and its potential to address intricate 
challenges in molecular generation.

Diversity of input text
Given that TSMMG is trained based on GPT-2 [24], 
which has undergone extensive pre-training on natural 
language datasets, we have a reasonable basis to hypoth-
esize that TSMMG can comprehend the similarities 
in natural language. Specifically, when provided with 
prompts that share the same semantics but exhibit sub-
tle differences in their expressions, TSMMG is likely to 
generate accurate molecules. This hypothesis stems from 
the fact that GPT-2 has acquired the ability to capture 
various linguistic patterns and semantic relationships 
during its training process. Consequently, it may possess 
the capability to generalize and transfer its knowledge to 
related but slightly different prompts. In essence, TSM-
MG’s potential to generate correct molecules may persist 
even with prompt variations due to its underlying under-
standing of linguistic similarities.

To test this hypothesis, we explored the use of diverse 
templates that encompass different language habits and 
variations. By making slight modifications to the original 
training templates, we aimed to assess TSMMG’s abil-
ity to generate correct molecules when input prompts 
were slightly altered. For example, during the training 
phase, we utilized the template “The molecule contains 
[FG], it can be absorbed by the human intestine.” for the 
FG+HIA task. We introduced minor adjustments to cre-
ate two new prompts: “I want a molecule that contains 
[FG] and can be absorbed by the human intestine.” and 
“Give me a molecule which contains [FG] and can be 
absorbed by the human intestine.” We conducted experi-
ments using these diverse prompts across four different 

tasks, as presented in Table  2, and the results are sum-
marized in Table 3.

The experiments demonstrated that TSMMG consist-
ently generated molecules that met the specified require-
ments to a large extent, even with modified prompts. As 
shown in Table 2, the validity of the generated molecules 
can still reach over 99% after using prompts of different 
styles. For the FG+BBB and FG+HIA tasks, using the 
T1 and T2 templates both resulted in approximately a 
9% decrease in SR compared to using the T0 template, 
while uniqueness, novelty, and diversity showed almost 
no significant changes. For the FG+DRD2 task, when 
using the T1 template, SR decreased by 33.36%, novelty 
decreased by 12.12%, while uniqueness increased by 
3.36%; when using the T2 template, SR decreased by 30%, 
novelty decreased by 11.22%, while uniqueness increased 
by 1.58%. The FG+GSK3 task and the FG+DRD2 task 
show the same trend, that is, when using the T1 and T2 
templates, SR and novelty show a significant decrease 
and uniqueness shows a certain degree of increase, while 
other indicators show relatively small differences.

These results suggest that TSMMG exhibits a cer-
tain degree of tolerance to diverse prompts and can 
continue to generate molecules that meet the specified 
requirements, even when the prompts are modified. It is 
important to note that while TSMMG may demonstrate 
tolerance to prompt variations, the extent of its ability 
to generalize and generate accurate molecules may vary 
depending on the specific prompt and task.

Discussion
TSMMG as producer
The development of TSMMG can be viewed as a form of 
knowledge distillation [25], as depicted in Fig.  4A. Ini-
tially, diverse molecular properties are obtained using 
teacher models. These properties are then encapsu-
lated into natural language descriptions and combined 
with molecular sequences to create text-molecule pairs. 
TSMMG is trained using these text-molecule pairs as 
training data, enabling it to acquire the knowledge inher-
ent in the properties through natural language. By lev-
eraging this process, TSMMG becomes proficient in 
generating molecules that exhibit the desired proper-
ties. Notably, TSMMG has the ability to generate novel 
molecules possessing specific properties based on the 

Fig. 3  A Docking reference for EP2 and EP4. B Molecules generated by TSMMG that can simultaneously bind to both EP2 and EP4 receptors. 
The input prompt is: “The molecule exhibits a high QED score, good synthetic accessibility. It can pass through the blood-brain barrier and binds 
to both Prostanoid EP2 and EP4 receptors.” During training, TSMMG has seen molecules that can individually bind to both EP2 and EP4 receptors, 
but it has not explicitly received molecules that simultaneously satisfy all the constraints in this prompt. Nevertheless, it still successfully generates 
the desired molecules

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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acquired knowledge. This offers a feedback loop to the 
teacher models, allowing them to refine and update their 
knowledge.

To illustrate this, we conducted further experiments 
involving serine/threonine-protein kinase D3 (KPCD3), 
Bruton’s tyrosine kinase (BTK), fibroblast growth fac-
tor receptor 4 (FGFR4), and papain-like protease 3CL. 
Initially, each target dataset is randomly divided into 
training and test sets. Subsequently, a random subset is 
partitioned from the training dataset to serve as the vali-
dation set, and an SVM predictor is trained using the 
training set and validated using the validation set. This 
process is repeated 100 times to select the best predic-
tor. Finally, the chosen predictor is applied to the test set 
to obtain the F1 score. For comparison, different num-
bers of molecules generated by TSMMG that can bind 
to the corresponding target are randomly added to the 
training set to train new SVM predictors. This process 
is also repeated 100 times to yield consistent statistical 
data. These added molecules are referred to as pseudo-
samples. The experimental results presented in Fig.  4B 
demonstrate that the addition of pseudo-samples sig-
nificantly enhances the performance of the predictors. 

Notable improvements are observed in KPCD3, BTK, 
FGFR4, and 3CL by approximately 13%, 4%, 17%, and 7%, 
respectively. Furthermore, as the number of pseudo-sam-
ples increases, the performance of each predictor tends 
to converge. These results indicate that TSMMG can dis-
cern the commonalities shared by molecules with specific 
properties and generate novel molecules that embody 
these commonalities. Moreover, TSMMG’s unique abil-
ity to learn from teacher models and provide feedback for 
updating the knowledge of these models initiates a sym-
biotic relationship that promotes continuous improve-
ment in their respective capabilities.

Comparison with other methods
Although existing commercial or open-source LLMs 
such as GPT-4 [26] and Llama [27] perform well on vari-
ous natural language tasks and exhibit some molecu-
lar generation capabilities, they struggle to consistently 
generate high-quality, novel molecules, especially under 
multiple constraints. This is primarily because they 
have not been fine-tuned on specialized molecule data-
sets. Consequently, we did not consider vanilla LLMs as 
baselines. Additionally, similar models like ChemLLM 

Table 2  Prompts we used in order to test the tolerance of TSMMG to diverse inputs, [FG] refers to any functional group

DRD2/GSK3 T0 The molecule contains [FG]. It is active to DRD2. [D2D2/GSK3]

T1 I want a molecule that contains [FG] and can bind to [D2D2/GSK3]

T2 Give me a molecule which contains [FG] and can bind to [D2D2/GSK3]

BBB T0 The molecule contains [FG]. It can pass through the blood-brain barrier

T1 I want a molecule that contains [FG] and can pass through the blood-brain barrier

T2 Give me a molecule which contains [FG] and can pass through the blood-brain barrier

HIA T0 The molecule contains [FG]. It can be absorbed by human intestine

T1 I want a molecule that contains [FG] and can be absorbed by human intestine

T2 Give me a molecule which contains [FG] and can be absorbed by human intestine

Table 3  Experimental results with different template styles

Template Task Valid Unique Novelty Diversity SR SR (nFG)

T0 FG+DRD2 99.80% 68.48% 92.54% 85.77% 78.04% 93.18%

FG+GSK3 99.92% 69.79% 92.88% 89.23% 79.44% 94.40%

FG+BBB 99.82% 95.53% 94.30% 92.05% 79.24% 96.14%

FG+HIA 99.98% 96.16% 92.64% 91.54% 79.94% 95.80%

T1 FG+DRD2 99.70% 71.84% 80.42% 86.26% 44.68% 82.12%

FG+GSK3 99.68% 73.49% 83.90% 89.56% 47.36% 84.88%

FG+BBB 99.68% 94.30% 95.48% 92.28% 70.64% 96.84%

FG+HIA 99.78% 94.11% 94.82% 91.99% 69.34% 93.86%

T2 FG+DRD2 99.80% 70.06% 81.32% 86.18% 48.04% 83.52%

FG+GSK3 99.68% 71.89% 84.68% 89.52% 50.22% 85.60%

FG+BBB 99.74% 95.67% 95.40% 92.17% 70.72% 96.52%

FG+HIA 99.90% 95.24% 95.48% 91.86% 71.10% 94.12%
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Fig. 4  TSMMG as a producer. Molecules generated by TSMMG can be used to improve the accuracy of the predictor. A We leverage a large number 
of property predictors, which can be regarded as teacher models, to obtain molecular properties, and then use these properties to construct 
textual descriptions to train TSMMG. The molecules generated by TSMMG can also be used to update the corresponding property predictors. This 
has two benefits: firstly, it allows us to verify whether TSMMG has effectively extracted the latent representation of the property, and secondly, it can 
improve the accuracy of the property predictors. B The experimental results on four property predictors are shown in the figure. The horizontal axis 
represents the number of generated molecules added to the training data, which we refer to as pseudo-samples. As can be observed, the accuracy 
of the property predictors increases and tends to converge as the number of pseudo-samples increases
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[28] and ChemCrow [29] are also unsuitable for multi-
constraint molecular generation tasks. To better demon-
strate the capabilities of TSMMG, we present two sets of 
comparisons in Additional file 1: (1) using a larger open-
source LLM, Llama2, fine-tuned with LoRA [30], as the 
backbone; and (2) comparing traditional multi-constraint 
molecular generation methods, including Reinvent [31], 
Reinvent2 [31], and MCMG [12]. We utilized the rein-
forcement learning method DPO [32] to further fine-tune 
TSMMG in order to achieve a relatively fairer compari-
son. The results of Reinvent, Reinvent2, MCMGL, and 
MCMGM are quoted from [33].

Conclusions
TSMMG presents an effective method for utilizing 
natural language to generate molecules with multiple 
constraints. By employing knowledge distillation, the 
property prediction capabilities of specialized molecu-
lar models are transferred to enable LLMs to generate 
molecules with specific properties. This transforms the 
molecule screening process into a molecule generation 
process, allowing exploration of a larger molecular space. 
We demonstrate TSMMG’s exceptional molecular gen-
eration capabilities through tasks with two, three, and 
four constraints, including structure, physicochemical 
properties, affinity, and ADMET. TSMMG can generate 
novel molecules that meet specified requirements based 
on natural language descriptions. Additionally, TSMMG 
exhibits zero-shot generation capabilities. TSMMG 
shows potential not only in drug discovery but also in 
other molecule-related fields, such as material discovery.

On one hand, the capabilities of TSMMG can be 
enhanced as the capabilities of the teacher model 
improve. On the other hand, the novel molecules gener-
ated by TSMMG have the potential to further enhance 
the teacher model’s capabilities. Our future work will 
focus on leveraging more advanced teacher models to 
improve TSMMG’s capabilities and enabling TSMMG to 
generate molecules with a wider range of properties.

Methods
Problem setting
Natural language serves as a user-friendly means for 
human-machine interaction, making it an ideal solution 
for generating molecules from natural language descrip-
tions. Recent successes in the development of large lan-
guage models (LLMs) [26, 34] inspire the vision that we 
may achieve the generation of molecules from diverse 
molecular spaces by simply modifying the input prompt. 
This approach offers a promising solution to address the 
challenge of generality in molecular generation. Despite 
both natural language and SMILES being sequence 
data formats, SMILES can be viewed as a specialized 

molecular language that can be challenging for humans 
to interpret. From this perspective, generating molecu-
lar sequences from natural language descriptions can be 
regarded as a translation task, an area where LLMs excel.

Given a natural language sequence W = {w1,w2, ...,wn} , 
the objective is to generate a corresponding molecule 
represented by a SMILES sequence, S = {s1, s2, ..., sm} , 
which can be formulated as conditional probability 
P(S|W).

In order to ensure the quality of the generated mol-
ecules, it is imperative to adhere to the following 
prerequisites: (1) Validity: The generated SMILES rep-
resentation, S, should strictly adhere to the syntax rules 
of the SMILES format, guaranteeing that it forms a 
valid and well-structured molecule. (2) Relevance: The 
molecule represented by S should accurately reflect the 
physical and chemical properties described by the natu-
ral language sequence W. This entails that if there exists 
a subsequence Wi,j = {wi,wi+1, . . . ,wj} in W that speci-
fies a particular property, there should be a correspond-
ing subsequence Sk ,l = {sk , sk+1, . . . , sl} in S that satisfies 
the desired property. (3) Diversity: While satisfying the 
validity and relevance criteria, the generated S should 
exhibit diversity. In other words, the generated molecules 
should not be identical or overly similar, providing a 
range of molecular structures that fulfill the given prop-
erties. (4) Novelty: The model should possess the ability 
to generate S that are not present in the training set. This 
capability ensures that the generated molecules introduce 
new and previously unseen chemical structures, thereby 
expanding the exploration space beyond the confines of 
the training data.

The quandary of translating natural language into 
molecular language, albeit bearing resemblances to con-
ventional machine translation, poses distinctive chal-
lenges. In this context, three fundamental patterns of 
correspondence between natural language and molecular 
sequences can be discerned: (1) One-to-one mapping: 
In this pattern, a specific text description corresponds 
to a single, specific molecular sequence. Models like 
MolT5 [35], MolXPT [36], and MoleculeSTM [37] have 
tackled this problem as a query task, aiming to establish 
a direct mapping relationship between text and molecu-
lar sequences. However, this approach may not be ideal 
for generating novel molecules with diverse properties, 
as it relies on a fixed ground truth and does not explore 
beyond the known data. (2) One-to-many mapping: 
Here, a text description can correspond to multiple dif-
ferent molecular sequences. This pattern allows the 
model to learn the feature distribution of the target space, 
enabling sampling from the distribution to generate new 
molecules. Models like those proposed by Kotsias et  al. 
[38] and Wang et al. [12] leverage this pattern effectively 
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by training on specific datasets containing molecules 
with shared properties which implicitly embracing the 
one-to-many mapping pattern. (3) Many-to-one map-
ping: In this pattern, a specific molecular sequence can 
be described in various ways. By understanding the 
inherent relationship between different attributes, it is 
possible to discover new properties of a molecule. This 
pattern offers opportunities for exploring diverse attrib-
utes of molecules beyond their known properties. In 
order to develop a universal molecular generative model 
capable of generating molecules with various desired 
properties without the need for retraining, it is essential 
to accumulate a substantial amount of data that explicitly 
adheres to the one-to-many and many-to-one mapping 
patterns. The primary challenge lies in acquiring a suffi-
cient number of text-molecule pairs in a rapid, conveni-
ent, and cost-effective manner.

Data generation framework
Several studies have explored the integration of natural 
language and molecular language. MolT5 [35] aimed to 
achieve bidirectional translation between natural lan-
guage and molecular language. The model underwent 
initial pre-training on an extensive collection of unpaired 
natural language corpora and molecular sequences, fol-
lowed by fine-tuning on the text-molecule paired data-
set ChEBI-20. However, ChEBI-20 presents two notable 
limitations. Firstly, it contains a relatively small set of 
33,010 text-molecule pairs, making it challenging to 
establish the correspondence between natural language 
and molecular language. Secondly, the text descriptions 
in this dataset, sourced from the comment field in ChEBI 
[39], often contain information unrelated to molecu-
lar properties. Additionally, these descriptions exhibit 
a strong one-to-one relationship with the molecules, 
posing challenges for the model to explore the specific 
molecular space associated with desired properties. 
MolXPT [36] proposed a method that involves incor-
porating molecular sequences within the input text for 
large language models (LLMs). CLAMP [40] introduced 
a fusion approach, combining a molecule encoder and a 
text encoder for property prediction tasks. Christofidellis 
et al. [41] presented a unified model capable of handling 
various text-to-text, text-to-molecule, molecule-to-text, 
and molecule-to-molecule tasks. MolReGPT [42] imple-
mented tasks such as molecule captioning and text-based 
molecule generation by assigning ChatGPT a role as a 
biochemist, facilitating in-context learning.

However, a common limitation in all of the above-
mentioned studies is their reliance on the ChEBI dataset, 
which constrains their performance due to data scarcity 
and quality issues. As of now, limited research efforts 
have been directed at addressing these issues in natural 

language-based molecular generation. Therefore, we 
propose a knowledge distillation-based approach to con-
struct an extensive and high-quality dataset of natural 
language-molecule pairs.

Figure  1A provides an overview of the framework 
employed for the creation of our dataset. The underly-
ing concept revolves around the utilization of advanced 
molecular parsing tools and models to extract knowledge 
related to molecules. Subsequently, this acquired knowl-
edge is transformed into natural language text, resulting 
in paired data comprising molecules and their corre-
sponding textual descriptions. Within this framework, 
the tools and models responsible for extracting molecular 
knowledge are collectively referred to as “teachers,” while 
TSMMG assumes the role of the “student.” TSMMG 
undertakes the task of learning various properties asso-
ciated with molecules from these “teachers.” It also 
comprehends the mapping relationship between these 
properties and the molecular structures themselves. This 
knowledge empowers TSMMG to generate new mol-
ecules based on specified properties using natural lan-
guage descriptions.

Within this framework, multiple “teachers” are 
employed, each with distinct capabilities related to 
molecular properties and structures. These teachers 
encompass a range of tools and models, including:

•	 Physicochemical property teacher: RDKit, a tool 
capable of parsing molecules to extract physicochem-
ical properties such as molecular weight (MW), the 
number of aromatic rings (AROM), LogP, SA, QED, 
the number of hydrogen bond acceptors (HBA), the 
number of hydrogen bond donors (HBD), and topo-
logical molecular polar surface area (PSA).

•	 ADMET property prediction models: admetSAR 
[43], based on support vector machine (SVM), pre-
dicts ADMET properties, such as blood-brain barrier 
permeability and absorptivity.

•	 Affinity prediction models: Olivecrona et  al.’s SVM-
based models [44] and Jin et al.’s models [45] can pre-
dict the binding probabilities of molecules to specific 
targets, including DRD2, GSK3, and JNK3. Newer 
models such as MolTrans [46], DrugBAN [47], and 
TransformerCPI [48] are designed to predict the 
affinity of small molecules to receptor proteins and 
more.

•	 Structural information extraction: In addition to 
these property-related teachers, the IUPAC name 
of a molecule, which bears structural information, 
is considered. The IUPAC name exhibits a gram-
mar resembling natural language and provides 
standardized descriptions of molecules. By break-
ing down IUPAC names, it is possible to extract 
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structural components of a molecule. For instance, 
deconstructing the molecule “(2-methyl-5-methyl-
sulfonylphenyl)methanamine”  yields the func-
tional groups “methyl,” “methylsulfonylphenyl,” 
and “methanamine.” Therefore, an IUPAC parser is 
proposed, along with a set of rules for dissecting 
IUPAC names, serving as an additional “teacher” 
for extracting the internal structure of molecules.

Through these “teachers,” we acquire extensive knowl-
edge about molecules, including their structural 
information, physicochemical properties, and bind-
ing affinities to specific receptors. This information 
is then transcribed into natural language descriptions 
and combined with the corresponding molecules to 
create text-molecule pairs. For an example as shown 
in Fig.  1B, let us consider a molecule represented as 
“CCN1CCCC1CNC(=O)c1c(OC)ccc(Cl)c1O.” We can 
break down its IUPAC name to extract the functional 
group “methoxybenzamide.” By utilizing RDKit, we 
determine its LogP, QED, and SAs. We further predict 
its affinity with DRD2 through a classifier proposed 
by Olivecrona et al. [44] and evaluate its likelihood of 
passing through the blood-brain barrier using admet-
SAR. These various properties are then associated 
with the molecule using natural language templates. 
The data generation method offers several notable 
advantages: (1) With numerous publicly accessible 
molecular databases like PubChem [49] and ZINC 
[50], our approach allows for the rapid acquisition of 
a large number of text-molecule pairs. This effectively 
overcomes the data limitations often encountered in 
natural language-based molecular generation mod-
els; (2) The text molecule pairs generated through 
this method exhibit a high degree of relevance. Each 
segment of text contains certain properties of the 
molecules, enabling the model to learn the mapping 
relationship between text descriptions and molecu-
lar properties more effectively; (3) There is a wealth 
of advanced tools and models available for molecular 
structure analysis and property prediction. Our frame-
work simplifies the process of transferring knowledge 
from these advanced tools and models into a student 
model in natural language form. This empowers the 
student model to generate molecules that incorpo-
rate this knowledge. (4) The method is highly scal-
able, allowing for the seamless transfer of knowledge 
for various molecular properties. It can be applied to 
an array of properties, making it versatile for different 
research needs. (5) Our method supports continuous 
knowledge updates. This means that the student model 
can benefit from the latest and more robust models, 
ensuring that it remains up-to-date and well-informed.

Training model
We began by collecting 2 million molecules from 
PubChem. Subsequently, we harnessed the tools and 
models mentioned earlier to extract comprehensive 
knowledge regarding these molecules. This knowledge 
was then translated into natural language text using pre-
defined templates and combined with the corresponding 
SMILES representations. To maximize the model’s capa-
bilities, we thoughtfully organized the data to encom-
pass both one-to-many and many-to-one patterns. This 
approach ensures that the model learns the underly-
ing distribution of specific inputs, promoting adapt-
ability and preventing the mere memorization of fixed 
responses. For instance, let us take molecule M, which 
possesses ten pieces of extracted knowledge. If we were 
to compile all ten pieces into a single text, denoted as T, 
the resulting molecule space associated with T would 
likely be highly restricted, potentially corresponding to 
just one specific molecule, let us say, molecule A. This 
would essentially create a one-to-one data pattern. To 
overcome this limitation, we adopt a strategy where, for 
each molecule, we select a subset of its knowledge to 
compose the text. The goal here is to craft this text in a 
way that it corresponds to as many molecules as possi-
ble. This strategy empowers the model to gain insights 
into the broader distribution of molecules linked to the 
provided text, rather than locking it into a specific, iso-
lated instance. Then, the training of TSMMG involves 
two key steps: pre-training on a large natural language 
corpus and fine-tuning on text-molecule paired data that 
we have constructed. In the first stage, TSMMG under-
goes pre-training on a large natural language corpus. 
This enables TSMMG to learn and understand natural 
language by capturing the statistical patterns and lin-
guistic structures present in the data. The pre-training 
stage helps TSMMG acquire a general understanding of 
language and forms the initial foundation for subsequent 
training stages. The second stage involves a fine-tuning 
on the text-molecule paired data that contains descrip-
tions of various properties as shown in Table 3. This fine-
tuning stage focuses on teaching TSMMG the mapping 
between text descriptions and molecular sequences as 
well as the syntax of SMILES. By fine-tuning TSMMG 
on this specific dataset, it becomes proficient in generat-
ing molecules based on specific text-described-property 
such as functional groups, LogP, physicochemical prop-
erties, drug-like properties, and affinity scores to certain 
targets. The architecture of TSMMG is the same as GPT 
[24]. TSMMG follows the settings of GPT2small, which 
consists of 12 layers and has a total of 117 million param-
eters. We downloaded the weights of GPT2small from 
Huggingface model repository [51] to initialize TSMMG. 
This helps with cost and computational considerations 
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by leveraging pre-trained weights for an efficient start-
ing point. And since the weights are trained by a large 
number of language corpus, we can directly fine-tune the 
model using the text-molecule paired data we construct. 
We fine-tune TSMMG on 8 A100 40G GPUs for around 
6 days. We use the subsequent hyperparameters: a batch 
size of 32, a learning rate set to 5e−4, a warmup steps of 
100. We use AdamW [52] as the optimizer.

Metrics
To evaluate the performance of the TSMMG model, we 
employed four common metrics in molecular generation: 
validity, uniqueness, novelty, and diversity. Each of these 
metrics was essential for a comprehensive evaluation: 
Validity assesses whether the generated molecules con-
form to the syntax rules of SMILES. We utilized RDKit 
[53] to parse the generated molecules, considering them 
valid if the parsing process was successful. Uniqueness 
measures the proportion of non-repetitive molecules 
among the generated set. It ensures that the model pro-
duces diverse molecules. Novelty signifies whether the 
generated molecules are previously unseen in the train-
ing dataset, preventing the model from regenerating 
known molecules. Diversity describes the structural dif-
ferences between generated molecules, it is calculated as:

where sim(X,Y) is calculated based on the Tanimoto dis-
tance with respect to the Morgan fingerprints of gener-
ated molecules X and Y. In addition to these standard 
metrics, we introduced the concept of success ratio (SR) 
to measure whether the generated molecules meet prede-
fined conditions. We establish different criteria to define 
the success of generated molecules based on the specific 
task. These criteria are outlined as follows:

•	 FG: We leveraged IUPAC nomenclature to identify 
functional groups within the molecules. By pars-
ing IUPAC names and matching them to generated 
SMILES-encoded molecules, we checked if the gen-
erated molecules contained the specified functional 
groups.

•	 LogP: Using RDKit, we calculated the LogP values 
of the generated molecules and compared them to 
predefined values. The generation was considered 
successful if the LogP value fell within a margin of 1 
from the specified value.

•	 QED and SAs: For these tasks, we adopted criteria 
similar to prior work [12], considering QED as high 
if its value exceeded 0.6 and SAs as good if the score 
was less than 4.

Diversity = 1−
2

n(n− 1) X ,Y sim(X ,Y )
,

•	 DRD2 and GSK3: We employed the models proposed 
by Jin et  al. [45] to predict the affinity scores of the 
generated molecules. A molecule was considered 
successful if its corresponding affinity score exceeded 
0.5 for either target.

•	 BBB and HIA: We used models developed by Cheng 
et al. [43] to predict scores, determining if a molecule 
could pass through the blood-brain barrier (BBB) if 
its BBB score exceeded 0.5 or if it could be absorbed 
by the human small intestine (HIA) if its HIA score 
was above 0.5.

Moreover, for each multi-constraint task, we only con-
sidered molecules successful if they met all constraints 
contained in this task simultaneously. We generated 5000 
molecules to evaluate the model’s performance for each 
multi-constraint task. Note that we uniformly express 
all metric results in percentage format. While convert-
ing diversity to a percentage may lack intrinsic meaning, 
for the sake of ease of comparison with other metrics, we 
multiply it by 100. However, we refrain from appending 
the “%” symbol to distinguish it from other metrics.

Translating SMILES to IUPAC
There are several open works that provided their solu-
tions for translating SMILES to IUPAC name, such as 
STOUT [54] and IUPAC2Struct [55], but the inter-
faces they released are not for high throughput experi-
ments. Considering experimental efficiency, we trained 
our own SMILES2IUPAC model based on GPT2small. 
We formulate this problem also as conditional prob-
ability P(I|S) where generating a corresponding IUPAC 
name I = {i1, i2, . . . , in} by a given SMILES sequence 
S = {s1, s2, . . . , sm} . We collect 2 million SMILES-IUPAC 
paired data from PubChem to train this model. The 
model size and settings of SMILES2IUPAC are the same 
as TSMMG. For evaluating the trained SMILES2IUPAC 
model, we pass 1000 unseen molecules to it and gener-
ate 1000 corresponding predicted IUPAC names. We 
then break down the predicted IUPAC names to identify 
the functional groups, and check if all these functional 
groups exist in the corresponding ground truth IUPAC 
names. The experimental results show an accuracy rate 
of 94%.
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the convergence of models using different learning rates. Figure S8 high-
lights cases of generation failures. Figures S9, S10, and S11 respectively 
show docking examples of molecules generated for targets 3CL, BTK, and 
FGFR4. Figure S12 further illustrates the impact of FG frequency on the 
uniqueness of generated molecules. Table S1 explains the relationships 
between the metrics used. Tables S2, S3, and S4 provide additional experi-
mental parameter information.

Additional file 2. Contains the source data corresponding to the figures 
and tables.
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