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Abstract 

Background Numerous studies have shown that circRNA can act as a miRNA sponge, competitively binding to miR-
NAs, thereby regulating gene expression and disease progression. Due to the high cost and time-consuming nature 
of traditional wet lab experiments, analyzing circRNA-miRNA associations is often inefficient and labor-intensive. 
Although some computational models have been developed to identify these associations, they fail to capture 
the deep collaborative features between circRNA and miRNA interactions and do not guide the training of feature 
extraction networks based on these high-order relationships, leading to poor prediction performance.

Results To address these issues, we innovatively propose a novel deep graph collaboration learning method 
for circRNA-miRNA interaction, called DGCLCMI. First, it uses word2vec to encode sequences into word embed-
dings. Next, we present a joint model that combines an improved neural graph collaborative filtering method 
with a feature extraction network for optimization. Deep interaction information is embedded as informative features 
within the sequence representations for prediction. Comprehensive experiments on three well-established datasets 
across seven metrics demonstrate that our algorithm significantly outperforms previous models, achieving an aver-
age AUC of 0.960. In addition, a case study reveals that 18 out of 20 predicted unknown CMI data points are accurate.

Conclusions The DGCLCMI improves circRNA and miRNA feature representation by capturing deep collaborative 
information, achieving superior performance compared to prior methods. It facilitates the discovery of unknown 
associations and sheds light on their roles in physiological processes.

Keywords CircRNA-miRNA interaction, Graph neural networks, Collaborative filtering, Word2vec, LSTM

Background
Because of its unique closed-loop structure, circRNA 
has a high degree of stability in  vivo and is resistant to 
degradation by RNA enzymes [1, 2]. However, as a spe-
cial non-coding RNA, due to technological limitations, 
its important physiological functions were not recog-
nized in the early stages of discovery, and it was gener-
ally regarded as a by-product of RNA processing and the 
result of abnormal gene splicing, which did not attract 
widespread attention. With the development of high-
throughput sequencing technologies in recent years, the 
physiological function of circRNA has been gradually 
uncovered [3–5], and many computational models have 
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been proposed accordingly, such as circRNA identifica-
tion [6–8], circRNA and protein interactions [9–14], 
circRNA and disease association prediction [15–20], cir-
cRNA and drug discovery [21–26]. Among them, one of 
the most typical areas is the interaction between circRNA 
and miRNA, which plays a critical role in gene expres-
sion, cellular function regulation, and the pathological 
processes of diseases [13, 27–32]. For example, in tumo-
rigenesis and development [33], circRNA ciRS-7 removes 
the inhibition of miR-7 on its target genes by adsorption 
of miR-7, thus promoting the proliferation and migra-
tion of tumor cells. In rheumatoid arthritis [34], circRNA 
hsa_circ_0005198 regulates miR-145, affecting the pro-
liferation and migration of fibroblast-like synovial cells. 
These studies fully indicate that analyzing the regulatory 
mechanism mediated by circRNA-miRNA can help peo-
ple understand the causes of diseases and carry out tar-
geted prevention and treatment. Therefore, the analysis 
of circRNA-miRNA interactions has great research sig-
nificance and potential clinical application value.

However, traditional wet lab experiments for validat-
ing circRNA-miRNA associations often require long 
periods for sample preparation and experimental analy-
sis, along with expensive reagents, instruments, and 
equipment. In addition, they place high demands on the 
technical level and expertise of researchers. As a result, 
traditional experiments are often low-throughput, mak-
ing large-scale, comprehensive, and systematic analyses 
difficult, which limits further research on circRNA. With 
the rapid development of big data analysis technologies, 
many association prediction algorithms have emerged 
[35–42], which can analyze and model existing interac-
tion data to predict potential unknown associations with 
high confidence. In subsequent experimental validation, 
this approach effectively narrows down the most likely 
candidate objects, reducing the cost and trial-and-error 
time for experimental verification. The current CMI 
prediction algorithms are summarized in chronological 
order below.

In 2021, Lan et  al. [43] introduced Gaussian interac-
tion profile (GIP) kernels to calculate the similarity of 
circRNA and miRNA respectively, and construct a het-
erogeneous network by associating them with known 
CMIs. Then, they applied the DeepWalk algorithm [44] 
based on matrix factorization to extract the latent fea-
tures of circRNA and miRNA in the heterogeneous net-
work, ultimately predicting unknown associations via 
regularization, neighborhood information-based logical 
matrix factorization, and inner-product inference. This 
algorithm is named NECMA. Qian et al. [45] employed 
singular value decomposition (SVD) to capture the linear 
features of the corresponding circRNA and miRNA mol-
ecules in CMI and then calculated the multi-similarity of 

these molecules using Levenshtein distance and GIP ker-
nels. Nonlinear features were extracted using the Vari-
ational Graph Autoencoder (VGAE) [46], and LightGBM 
was used to predict based on both linear and nonlinear 
features. This algorithm is named CMIVGSD.

In 2022, Guo et  al. [47] constructed a new prediction 
model, WSCD, which used the continuous bag of words 
(CBOW) model and structural deep network embedding 
(SDNE) [48] respectively to train word embedding rep-
resentations as molecular attribute features and graph 
low-dimensional embeddings as behavioral features. The 
fused features were then inputted into convolutional neu-
ral networks (CNN) and deep neural network (DNN) for 
circRNA-miRNA association prediction. He et  al. [49] 
proposed a latent interaction prediction model based 
on graph convolutional networks (GCN) [50], named 
GCNCMI. Through graph convolution operations, this 
algorithm effectively mines and propagates complex rela-
tionships between nodes, providing deep information for 
predictions. Yu et al. [51] devised a universal prediction 
architecture SGCNCMI, which combines multimodal 
information. Specifically, they first construct fused fea-
tures using k-mer representation to capture RNA’s attrib-
ute features and introduce GIP kernels and sigmoid 
kernels to capture circRNA-miRNA similarity features. 
Then, the Sparse Autoencoder (SAE) is used to further 
extract deeper information and serve as feature repre-
sentations for the corresponding nodes. Finally, a GCN 
model aggregates adjacent information based on node 
attributes and association networks to predict potential 
CMIs. Wang et  al. [52] developed an improved algo-
rithm, KGDCMI. They input RNA attribute information, 
obtained from sequences and similarities via k-mer and 
GIP kernels, into SAE for representative feature extrac-
tion, and use HOPE graph embeddings to mine behav-
ioral information in CMI associations. Finally, a DNN 
model is applied to fuse features and predict unknown 
CMIs.

In 2023, Wang et al. [53] introduced a denoising multi-
view feature fusion prediction algorithm called JSND-
CMI. In detail, it calculates the Jaccard distance between 
sequences as structural features and uses sigmoid kernels 
to compute similarities as sequence attribute features. 
Struc2vec [54] is applied to extract local topological 
structures from the association network. The multi-view 
features are then trained with denoising autoencoders 
(DAE) to obtain more robust feature representations, fol-
lowed by prediction using GBDT [55]. Zhou et  al. [56] 
designed the SPBCMI model, which combines structural 
features captured by graph embedding and sequence fea-
tures extracted by BERT [57]. These features are input 
into a GBDT classifier for training to complete the CMI 
interaction prediction task. Wang et al. [58] proposed the 
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KS-CMI algorithm, which constructs a circRNA-miRNA-
cancer interaction network based on balance theory to 
extract molecular behavioral features. Subsequently, DAE 
is employed to enhance feature robustness, and the Cat-
Boost classifier is used for prediction. Li et al. [59] intro-
duced the DeepCMI model, which integrates molecular 
similarity matrices and topological information from GIP 
kernels in biomedical graphs. Multi-source information 
features are obtained and mapped into the same vec-
tor space using local linear embedding, and topological 
information features are further extracted using text-
associated DeepWalk. Finally, an XGBoost [60] classifier 
is employed to judge whether circRNAs and miRNAs 
interact. Wei et  al. [61] proposed the BCMCMI model, 
which combines semantic features of sequences captured 
by BERT networks, features from cosine similarity, and 
topological features of heterogeneous networks captured 
by Metapath2vec [62], training an XGBoost classifier to 
predict potential CMIs.

In 2024, Guo et al. [63] put forward a new prediction 
algorithm, CA-CMA, combining text embedding rep-
resentation and convolutional autoencoders. Firstly, 
Skip-Gram is used to obtain RNA embedding features, 
which are further refined using Convolutional Autoen-
coders (CAE). Meanwhile, Doc2Vec is employed to 
capture the semantic features of the sequences. Finally, 
CMI prediction is performed based on feature fusion 
using a DNN. Soon after, Guo et  al. [64] proposed an 
improved algorithm BGF-CMAP, which utilized GBDT 
and graph embedding methods. RNA word embeddings 
were obtained via Word2Vec [65], and CMI topological 
features were extracted using graph factorization (GF) 
and large-scale information network embedding (LINE). 
These features were fused and input into GBDT for CMI 
classification.

Although existing CMI prediction models have 
achieved relatively good prediction performance through 
various feature embedding algorithms and efficient neu-
ral network architectures, they generally suffer from 
the following issues that require further improvement: 
First, these models overlook the exploration of deep 
collaborative features in circRNA and miRNA interac-
tions. Secondly, they fail to guide the training of the 
underlying feature extraction network based on deep 
collaborative information, making it difficult to obtain 
representative feature embeddings, which affects the 
algorithm’s performance.

To address these issues, we introduce and extend the 
neural collaborative filtering algorithm from the field 
of recommender systems to circRNA-miRNA associa-
tion prediction. Specifically, we innovatively construct a 
neural graph collaborative filtering model (NGCF) com-
bined with a joint training framework for the underlying 

feature extraction network. An optimized loss function is 
designed to explicitly guide the training direction of the 
underlying feature extraction network based on deep col-
laborative information from circRNA-miRNA interac-
tions. These features are then stored in their respective 
embeddings as representative features, and the associa-
tion prediction score can be obtained by calculating the 
inner product of the corresponding vectors.

Experimental results on three well-established datasets 
demonstrate that our DGCLCMI algorithm achieves out-
standing performance compared to previous methods. 
Additionally, the ablation study and case analysis of the 
two main improvements proposed in this paper validate 
the effectiveness of our algorithm. Therefore, DGCLCMI 
is an innovative and high-performance circRNA-miRNA 
association prediction tool (the model architecture dia-
gram is shown in Fig.  1), which is expected to advance 
research in this field. The contributions of this paper are 
summarized as follows:

(1) For the first time, the neural collaborative filtering 
algorithm is introduced and improved to mine deep 
interaction features of circRNA-miRNA.

(2) An innovative joint optimization framework for 
deep collaborative feature mining and underlying 
feature extraction is constructed.

(3) Experiments on three well-recognized datasets 
show that DGCLCMI achieves superior perfor-
mance compared to existing methods.

Results and discussion
Performance of the proposed algorithm
We summarized publicly available datasets commonly 
used in previous research, including CMI-20208, CMI-
9589, and CMI-9905, and conducted fivefold cross-val-
idation on these datasets using the proposed algorithm. 
The obtained performance is measured using seven indi-
cators from various aspects, and the results are shown in 
Fig. 2 and Table 1. At the same time, for the convenience 
of intuitive evaluation, we have also visualized the results, 
as shown in Fig. 3.

It can be observed that our algorithm achieved good 
performance in the fivefold cross-validation of both the 
9589 and 20,208 CMI correlated pairs, demonstrating 
excellent performance across all metrics. Notably, the 
algorithm showed particularly strong performance in 
the specificity and precision metrics. As is well-known, 
higher specificity indicates a stronger ability of the model 
to recognize negative samples, leading to a lower mis-
diagnosis rate, while higher precision reflects better 
accuracy in identifying positive cases. Additionally, the 
algorithm demonstrates reasonably good performance 
in the sensitivity metric, which measures the recall of 
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positive samples. Consequently, the algorithm achieves 
outstanding overall performance in the comprehen-
sive AUC metric, with fivefold average AUCs of 0.9546, 
0.9610, and 0.9645 for the CMI-20208, CMI-9589, 
and CMI-9905 datasets, respectively, yielding an aver-
age AUC of 0.9600. A high AUC value suggests that the 

model can effectively differentiate between positive and 
negative samples across different thresholds.

As is known, a higher specificity value indicates 
a stronger ability of the model to identify nega-
tive samples, resulting in a lower misdiagnosis rate; a 
higher precision value reflects the model’s accuracy in 

Fig. 1 DGCLCMI model overall architecture diagram
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identifying positive cases. Additionally, the algorithm 
displayed satisfactory performance in the sensitivity 
metric, which measures the recall of positive samples. 
Therefore, the algorithm achieved excellent overall per-
formance in the AUC (area under che Curve) metric, 
with the fivefold average AUC on the CMI-20208, CMI-
9589, and CMI-9905 datasets being 0.9543, 0.9611, 
and 0.9647, respectively, with an average of 0.9600. A 
high AUC value indicates that the model was able to 

effectively distinguish between positive and negative 
samples at different thresholds.

Of course, compared to other metrics, the MCC 
result may not stand out as much. As a metric that con-
siders true positives, false positives, false negatives, 
and true negatives, MCC imposes higher demands on 
the algorithm’s performance. Nevertheless, our algo-
rithm demonstrates significant improvement in this 
metric compared to state-of-the-art methods (related 

Fig. 2 Heatmap showing fivefold cross-validation results of our algorithm across three datasets

Table 1 Average performance of our algorithm on the CMI-20208, CMI-9589, and CMI-9905 datasets

Dataset Specificity Precision Sensitivity MCC Accuracy AUC AUPR

CMI-20208 0.9439 0.9294 0.7394 0.6981 0.8417 0.9546 0.9415

CMI-9589 0.9437 0.9318 0.7758 0.7297 0.8596 0.9610 0.9501

CMI-9905 0.9452 0.9352 0.7988 0.7521 0.8719 0.9645 0.9546

Average 0.9443 0.9321 0.7713 0.7266 0.8577 0.9600 0.9487

Fig. 3 Radar chart showing fivefold cross-validation results of our algorithm across three datasets
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comparison experiments are presented in the next sec-
tion). In summary, the proposed algorithm exhibits 
strong performance in the CMI prediction task and offers 
valuable insights for the exploration of potential CMIs.

Performance comparison with existing prediction 
algorithms
In this section, we compare the proposed method with 
several advanced CMI prediction models using AUC and 
AUPR indicators on three datasets, as shown in Fig.  4. 
Our method outperforms previous algorithms in terms 
of AUC across all datasets, with significant improve-
ments on certain datasets. Specifically, on the CMI-9905, 
CMI-20208, and CMI-9589 datasets, it surpasses the 
second-best method by 5.07%, 3.76%, and 1.47% in AUC, 
and 4.58%, 2.84%, and 0.96% in AUPR, respectively.

We observed that most of the previous algorithms, 
such as BGF-CMAP, SPBCMI, KS-CMI, DeepCMI, 
BCMCMI, and JSNDCMI, use the gradient boosting 
tree (GBT) algorithm or its variants as classifiers for the 
captured features. Although these classifiers iteratively 
reduce prediction errors by constructing multiple deci-
sion trees and making final predictions using weighted 
averages, they generally only handle “static” features. 
These methods cannot dynamically generate new fea-
tures or adjust them in real time, limiting their abil-
ity to extract deep dynamic features. For time-series or 
dynamic features, corresponding feature creation must 
occur during the data preprocessing stage. This limitation 
hinders the algorithm’s capacity to extract the most rep-
resentative features that would maximize performance, 
ultimately affecting the prediction results. In contrast, 
our model utilizes a neural graph collaborative filtering 
framework combined with a bottom-layer feature extrac-
tion network. This collaborative approach captures deep 
information in circRNA-miRNA interactions, which is 
then stored in their respective embeddings. As a result, 
this dynamic training mechanism enables comprehensive 
exploration of association patterns in CMI, leading to sig-
nificant performance improvements over static methods 
(related ablation experiments and evaluations of different 
classifiers are discussed in the next section).

We also found that algorithms using autoencoders or 
their variants, such as SGCNCMI, KGDCMI, CMIVGSD, 
and CA-CMA, which perform further feature extrac-
tion, generally fail to achieve optimal performance. While 
autoencoders can automatically extract low-dimensional 
feature representations from high-dimensional data 
without labels, the features they generate often lack 
clear practical or physical significance. Moreover, since 
there are no explicit supervisory signals, the extracted 
features are difficult to directly apply to downstream 
tasks. To obtain useful feature embeddings for specific 
tasks, significant manual intervention (e.g., tuning, add-
ing constraints) is usually required. In contrast, the joint 
optimization and adaptive feature-capturing network 
proposed in this paper offer notable practical advantages 
for task-oriented feature extraction.

For a more comprehensive comparison, we present 
additional metrics on the CMI-9905 and CMI-20208 
datasets, as shown in Tables  2 and 3. It is clear that, 

Fig. 4 AUC and ACPR curve comparison of our algorithm with existing prediction algorithms on three datasets

Table 2 Comparison of four performance metrics between the 
proposed and existing algorithms on CMI-9905

Algorithm Accuracy Precision Specificity MCC

KGDCMI 0.8265 0.8435 0.8510 0.6538

JSNDCMI 0.8231 0.8232 0.8249 -

DeepCMI 0.8244 0.8290 - 0.6496

BCMCMI 0.8316 0.8083 - 0.6670

KS-CMI 0.8343 0.8366 - -

SPBMCI 0.8405 - - 0.6864

CA-CMA 0.8399 0.8328 0.8289 0.6804

Our 0.8719 0.9352 0.9452 0.7521

Table 3 Comparison of four performance metrics between the 
proposed and existing algorithms on CMI-20208

Algorithm Accuracy Specificity Precision MCC

WSCD 0.8161 0.8132 0.8143 0.6323

BGF-CMAP 0.8290 0.8384 0.8353 0.6581

Our 0.8417 0.9439 0.9294 0.6981
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compared to existing models, our algorithm exhibits 
superior performance across all metrics. In CMI-9905, 
compared to the CA-CMA model proposed in 2024, our 
method achieves approximately a 12% improvement in 
Specificity, a 10% improvement in Precision, and a 6% 
increase in overall MCC. In the larger CMI interaction 
network (CMI-20208), compared to the BGF-CMAP 
model proposed in 2024, our algorithm still achieves 
about an 11% improvement in Specificity, a 10% improve-
ment in Precision, and about a 4% increase in overall 
MCC. These results further highlight the robustness of 
our algorithm, demonstrating the effectiveness of the 
deep graph collaboration method proposed in this paper.

Ablation experiments and analysis
Performance evaluation of different classifier algorithms
To highlight the superiority of the proposed algorithm, 
which introduces and improves the neural collaborative 
filtering algorithm to mine deep interaction features of 
CMI, we perform an ablation analysis comparing it with 
commonly used classifier algorithms in previous studies 
such as AdaBoost, Gradient Boosting, Logistic Regres-
sion, Random Forest, and SVM. This comparison is based 
on the same numerically processed sequence features, 
as shown in Fig.  5. The results show that our dynamic 
and unified model performs exceptionally well across all 
datasets, standing out clearly. This further validates the 
earlier point that our algorithm surpasses “static” classi-
fiers, which are based on decision tree ensemble learning 
algorithms and cannot dynamically adjust features dur-
ing training.

AdaBoost improves performance by adjusting sample 
weights, while Random Forest uses Bagging (Bootstrap 

Aggregating) to train multiple decision trees in parallel, 
with the final result determined by the weighted sum of 
all trees. Gradient Boosting optimizes the model by grad-
ually reducing residuals. However, these classifiers can 
only perform classification based on existing features and 
cannot adapt features based on label information, leaving 
room for performance improvement. Logistic Regres-
sion, being a linear model, is suitable for linearly sepa-
rable data, but for the highly nonlinear CMI prediction 
task, it struggles to capture such complexity effectively.

We also observed that SVM did not perform well in 
this experiment. This might be because SVM typically 
excels in small sample sizes and high-dimensional, line-
arly separable scenarios. However, in large-scale datasets 
with more noise, it may not be as efficient as other algo-
rithms, such as Random Forest or neural networks.

Performance evaluation of different feature extraction 
algorithms
In this section, to validate the contribution of the deep 
collaborative feature mining and bottom-layer feature 
extraction joint optimization framework proposed in this 
paper, as well as the chosen feature extraction algorithm 
LSTM, we compare and perform an ablation analysis 
on various feature extraction algorithms used in previ-
ous studies, such as CNN, RNN, GRU, and CAE, using 
the proposed neural graph collaborative filtering model 
(Fig. 6). We observe that the feature extraction algorithms 
paired with the neural graph collaborative filtering model 
(except for CAE) all achieved excellent performance 
under the joint optimization framework. However, the 
performance of the non-jointly optimized CAE is under-
whelming, likely because the low-dimensional features 

Fig. 5 Performance comparison of DGCLCMI and other classifiers on the same features numerically processed
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captured by the autoencoder lack clear meaning and do 
not have direct constraints for optimization based on the 
final task, resulting in suboptimal performance.

Although CNN, RNN, LSTM, and GRU show very sim-
ilar performance across the three datasets, the red curve 
stands out slightly, achieving the best performance. The 
reason may be that, in time-series data, CNN extracts 
patterns within local time windows using one-dimen-
sional convolutional kernels, similar to how local spatial 
features are extracted in images. It can capture the local 
correlations between different time steps in the sequence. 
However, for long-term dependency problems, it typi-
cally requires increasing the number of convolution lay-
ers or using a larger receptive field (filter size), but this 
does not fully address the long-range dependency issue. 
As a result, CNN’s performance ranks lower among the 
four algorithms. The remaining three algorithms—RNN, 
LSTM, and GRU—are commonly used for sequence 
data processing. RNN is the most basic recurrent neu-
ral network structure, processing data step by step in a 
sequence by sharing the same weights. Each time step 
receives the current input and the hidden state from the 
previous time step. However, RNN suffers from gradi-
ent vanishing or explosion problems when processing 
long sequences, making it difficult to capture long-range 
dependencies. LSTM was specifically designed to address 
the long-range dependency issue in standard RNNs. It 
introduces a “cell state” to directly pass information and 
uses a “gate mechanism” to control the flow of informa-
tion. LSTM effectively remembers long-term informa-
tion and selectively “forgets” irrelevant data, making it 
suitable for long-sequence tasks. However, due to its 
complex gating structure, LSTM has a higher computa-
tional cost and longer training time (as shown in the fig-
ure, LSTM is the slowest to converge among the three). 
GRU is a simplified version of LSTM, merging some of 
the gating mechanisms in LSTM to reduce the number of 
parameters.

Although the performance difference between GRU 
and LSTM is not significant in the experiments of this 
paper, the simpler structure of GRU may result in slightly 
weaker performance when handling long-range depend-
encies in very long sequences. Therefore, the model in 
this paper selects LSTM, in combination with the neural 
graph collaborative filtering model, as the primary model 
for capturing deep graph collaborative information.

Case study
In order to further validate the proposed algorithm, 
which aids in the exploration of unknown associations, 
we conduct a case study in this section. First, we train the 
algorithm on CMI data with known labels and then pre-
dict whether there is an interaction between unknown 
circRNA and miRNA pairs. Unknown samples with high 
confidence were selected and further tested by consult-
ing relevant literature and the CircInteractome database. 
If relevant literature or database data existed, the sample 
was labeled as “Confirmed”; otherwise, it was labeled as 
“Unconfirmed”. The results are shown in Table  4. It can 
be seen that, of the 20 unknown correlated sample pairs 
in the table, 18 have been confirmed, and the remaining 
2 may also be confirmed in the future through practical 
testing. Overall, the proposed algorithm is able to pro-
vide potential interaction pairs with high confidence, 
effectively narrowing down the scope of candidates and 
reducing the cost of experimental trial and error, demon-
strating a strong ability to identify potential CMIs.

Conclusions
Circular RNAs (circRNAs) facilitate the expression of 
specific target genes by modulating miRNA activity and 
alleviating miRNA-mediated suppression, thereby influ-
encing critical cellular processes including prolifera-
tion, differentiation, and apoptosis. Therefore, studying 
circRNA-miRNA interactions is crucial for decipher-
ing intracellular regulatory networks and understanding 

Fig. 6 Performance evaluation of various feature extraction algorithms within the same deep collaborative information mining framework
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complex gene expression mechanisms. Although existing 
computational models have been proposed for predicting 
these interactions, they predominantly suffer from two 
fundamental limitations:

They overlook the extraction of interaction collabo-
ration features and fail to train the feature extraction 
network based on this information, which affects the 
performance of the algorithms. To resolve these draw-
backs, we introduce DGCLCMI, a new deep graph col-
laborative learning framework. Specifically, we enhanced 
the NGCF model to capture deep collaborative features 
of CMIs and employed these signals to guide the extrac-
tion of representative features from biological sequences 
for prediction. In comprehensive evaluations across three 
benchmark CMI datasets, our algorithm demonstrates 
superior performance over state-of-the-art methods. 
In conclusion, our framework exhibits strong CMI pre-
diction performance, which facilitates the exploration 
of unknown CMIs, thereby revealing the underlying 
disease-regulating networks and advancing the develop-
ment of early diagnosis and targeted therapies.

Methods
Datasets
In this study, to better evaluate the performance of the 
proposed algorithm and facilitate comparison with 
existing prediction models, we use the publicly avail-
able, experimentally validated datasets CMI-9905, 

CMI-9589, and CMI-20208, which have been employed 
in previous studies [63]. This allows for a performance 
evaluation under the same benchmark datasets. The 
detailed data are presented in Table  5. These datasets 
were sourced from the circBank [66] (http:// www. 
circb ank. cn/) and miRBase [67] (https:// www. mirba se. 
org/) databases, containing experimentally verified cir-
cRNA-miRNA interaction data. For model training and 
evaluation, we also randomly selected an appropriate 
number of negative samples to construct the circRNA-
miRNA association matrix D and performed a five-
fold cross-validation to randomly split the dataset into 
training and testing sets.

Proposed model architecture
The architecture diagram of our prediction model is 
shown in Fig.  1, which primarily consists of four main 
components: preliminary sequence feature extraction, 
sequence time dependence capturing, circRNA-miRNA 
deep collaboration information mining, and CMI inter-
action predicting. In the following sections, we will 
describe each of these four modules in detail to more 
clearly illustrate the internal structure and functionality 
of the algorithm proposed in this paper.

Sequence numerical processing
The original circRNA and miRNA sequences are only 
composed of four bases: A, G, C, and U, making the 
data highly specialized and difficult to interpret. To con-
vert these sequences into numerical features that can be 
understood by machines and facilitate further analysis, 
we adopt the Skip-gram model, which is commonly used 
for word representation in natural language processing 
(NLP), for the initial extraction of sequence numerical 
features.

Skip-gram [65], as a training form of Word2Vec, uses 
the center word wt of a given sentence to maximize the 
corresponding context word wt+j of the predicted posi-
tion to train the word representation (the formula 
is expressed as follows). Skip-gram is used in many 
NLP tasks and has achieved significant performance 
improvement.

Table 4 Twenty high-confidence CMIs predicted by DGCLCMI

No circRNA miRNA Evidence

1 hsa_circ_0009566 hsa-miR-646 Confirmed

2 hsa_circ_0010085 hsa-miR-658 Confirmed

3 hsa_circ_0023020 hsa-miR-326 Confirmed

4 hsa_circ_0024899 hsa-miR-663b Confirmed

5 hsa_circ_0030874 hsa-miR-658 Confirmed

6 hsa_circ_0041605 hsa-miR-361-3p Confirmed

7 hsa_circ_0049497 hsa-miR-1183 Confirmed

8 hsa_circ_0049497 hsa-miR-3182 Unconfirmed

9 hsa_circ_0050270 hsa-miR-1289 Confirmed

10 hsa_circ_0050501 hsa-miR-658 Confirmed

11 hsa_circ_0056345 hsa-miR-1299 Confirmed

12 hsa_circ_0063366 hsa-miR-1224-3p Confirmed

13 hsa_circ_0063366 hsa-miR-6504-5p Unconfirmed

14 hsa_circ_0069972 hsa-miR-326 Confirmed

15 hsa_circ_0073951 hsa-miR-450b-3p Confirmed

16 hsa_circ_0075975 hsa-miR-361-3p Confirmed

17 hsa_circ_0078807 hsa-miR-1183 Confirmed

18 hsa_circ_0079478 hsa-miR-1224-3p Confirmed

19 hsa_circ_0081151 hsa-miR-587 Confirmed

20 hsa_circ_0081156 hsa-miR-326 Confirmed

Table 5 Datasets details

Dataset CMI-9589 CMI-9905 CMI-20208

CircRNA 2115 2346 3569

MiRNA 821 962 1152

CMI 9589 9905 20,208

http://www.circbank.cn/
http://www.circbank.cn/
https://www.mirbase.org/
https://www.mirbase.org/
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For the encoding of circRNA and miRNA, consistent 
with CA-CMA, we treated each base as a word, set the 
dimension of the word vector to 64, and used the Skip-
gram model to train the embedding feature representations 
for the four bases of the corresponding RNA sequences.

Sequence contextual feature extraction
In order to capture the temporal contextual features in the 
sequence, we employ the well-known LSTM network in 
the field of NLP to regulate information flow through a gat-
ing mechanism. This mechanism filters valuable features, 
removes noise data, and effectively retains long-range 
dependencies. The key components of LSTM include the 
forget gate, input gate, and output gate, which determine 
how information is retained or discarded at each time step.

Specifically, the forget gate controls which information 
should be discarded from the cell state, and its computa-
tion is as follows:

where ft is the output of the forget gate. σ is the sigmoid 
activation function. Wf  is the weight matrix of the forget 
gate. ht−1 is the hidden state of the previous time step. xt 
is the current input. bf  is the bias term.

The input gate determines which new information 
should be added to the cell state. This process consists of 
two steps: (1) generating new candidate information; (2) 
updating the cell state based on the input gate. First, the 
candidate cell states are calculated:

where Ct represents the new candidate information, and 
tanh is the hyperbolic tangent function.

Input gate calculation:

Updated cell status:

Output gate calculation:

Updated hidden status:

To effectively capture the semantic features of cir-
cRNA and miRNA sequences, we set the input feature 

(1)
1

T

T∑

t=1

∑

−k≤j≤k ,j �=0

logP
(
wt+jwt

)

(2)ft = σ
(
Wf · [ht−1, xt ]+ bf

)

(3)C̃t = tanh (WC · [ht−1, xt ]+ bC)

(4)it = σ(Wi · [ht−1, xt ]+ bi)

(5)Ct = ft · Ct−1 + it · C̃t

(6)ot = σ(Wo · [ht−1, xt ]+ bo)

(7)ht = ot · tanh (Ct)

dimension of the LSTM network to 64 and the hidden 
state dimension to 256. Additionally, we stack two lay-
ers of LSTM networks to enhance the model’s capability 
to capture dependencies. The final output is compressed 
and refined using a fully connected layer, yielding 
128-dimensional feature representations.

circRNA‑miRNA deep collaborative information mining
Inspired by the NGCF model proposed by Wang et  al. 
[68] and the MLNGCF model [69], we apply the NGCF 
model with improvements to extend its applicability 
to CMI prediction tasks. Moreover, in previous studies 
employing NGCF, feature extraction, and collaborative 
information mining were treated as independent mod-
ules and trained separately. For example, the MLNGCF 
model first applied a deep autoencoder network (DAE) 
to extract low-dimensional embeddings from circRNA-
circRNA and disease-disease similarity graphs. These 
embeddings were then fed into NGCF to mine collabo-
rative information. However, the feature extraction and 
collaborative information mining modules were trained 
separately, preventing NGCF from leveraging the mined 
collaborative information to refine feature embeddings, 
thereby limiting their representativeness.

In this study, we integrate the feature extraction mod-
ule and the deep interactive information mining module 
into a unified optimization framework. By capturing the 
sequence context in the previous section, we obtained 
initial representative features of circRNA and miRNA 
sequences. We then propose a deep collaboration model 
that further explores circRNA-miRNA interactions to 
refine sequence embeddings based on CMI interaction 
data. Additionally, the mined collaboration information 
is leveraged to guide the extraction of sequence context 
features through gradient backpropagation. Specifically, 
we employ GNN to construct a multi-layer message pass-
ing mechanism, capturing circRNA-miRNA collaborative 
signals based on the CMI graph structure and optimizing 
the learned embeddings of circRNA and miRNA.

Construction of multi‑layer message propagation 
mechanism
Drawing inspiration from recommendation systems, we 
generalize a similar concept by treating miRNAs inter-
acting with circRNA as features of circRNA, thereby 
measuring the similarity between different miRNAs. 
Additionally, the interaction between circRNA and 
miRNA reflects the binding preference of circRNA for 
specific miRNAs.
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Message transfer
To achieve this, we design a message passing mechanism 
for information exchange between circRNA and miRNA. 
Given a set of CMI data (c,m) and their corresponding 
embeddings ec and em , the message propagation mecha-
nism encoding m → c integrates the embedding informa-
tion of em and interactive encoding between ec and em , 
formulated as follows:

 where pmc represents a loss factor in the message pass-
ing process, Nc and Nm denote the respective first-order 
neighborhoods, and W1 and W2 are the weight matrices 
for information propagation, responsible for extracting 
useful information from the corresponding elements.

Message aggregation
According to the miRNA message transmission mm→c , 
the original embedded information ec is aggregated to 
obtain a new representation e(1)c  . The weight matrix W1 
remains consistent with the one used in previous layers.

By stacking the aforementioned l message propaga-
tion layers, circRNA and miRNA can receive collabora-
tive signals propagated from their l-order neighbors, 
thereby capturing higher-order interaction information 
of CMI. Moreover, the model explicitly encodes deep 
collaborative information into the sequence representa-
tions, which is crucial for the subsequent evaluation of 
the association strength between circRNA and miRNA.

To facilitate parallelization, we employ a matrix repre-
sentation for layer-wise message propagation based on the 
GNN computational framework. Specifically, the interac-
tion matrix R is derived from the training set of CMI data, 
and we construct the adjacency matrix A ∈ R(n+m)×(n+m) 
of the collaboration graph, where n and m denote the num-
bers of miRNAs and circRNAs, respectively. The Laplacian 
matrix is then computed and normalized. Based on the 
computational framework of GNN, the matrix formulation 
for message propagation can be derived accordingly.

(8)mm→c = f (em, ec, pmc)

(9)mm→c =
1√

|Nc||Nm|
(W1em +W2(em ⊙ ec))

(10)e
(1)
c = LeakyReLU


W1ec +

�

i∈Nc

mm→c




(11)





m
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1√
|Nc||Nm|

�
W

(l)
1 e

(l−1)
m +W

(l)
2

�
e
(l−1)
m ⊙ e

(l−1)
c

��

e
(l)
c = LeakyReLU


W

(l)
1 e

(l−1)
c +

�
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m
(l)
m→c




 where I denotes the identity matrix and D represents the 
degree matrix. Through the l-layer message passing pro-
cess, we can obtain high-order circRNA-miRNA collabo-
rative signals and encode them into the corresponding 
sequence embeddings as representative sequence features.

Prediction of CMI interaction
After sequence semantic feature extraction and deep 
interaction information mining, we can obtain the repre-
sentative features of circRNA and miRNA sequences in 
a shared feature space. Thus, to evaluate the interaction 
between circRNAs and miRNAs, we directly calculate 
the inner product of their corresponding feature embed-
dings, ec and em , from which interaction scores can be 
derived. To closely fit the training data and capture the 
underlying CMI mechanism, we use cross-entropy loss 
as a measure of the difference between the model’s pre-
dicted and true values and apply gradient backpropaga-
tion to update the model parameters.

Experimental setup and evaluation metrics
The experimental results of the model proposed in this 
paper are based on the following settings: the learning rate 
lr is set to 1e − 4, the batch_size is 128, and the graph col-
laboration network employs three message-passing layers, 
each with a size of 64. The node_dropout and mess_drop-
out are both set to 0.1. The Adam optimizer is used to 
train the entire model with betas = (0.9, 0.999), eps = 1e − 8. 
In addition, the performance of the algorithm is evalu-
ated using a variety of metrics, including precision (Prec.), 
specificity (Spec.), sensitivity (Sens.), accuracy (Accu), Mat-
thews correlation coefficient (MCC), area under the curve 
(AUC), and area under the precision-recall curve (AUPR), 
providing a comprehensive evaluation of the model’s 
performance.

(12)Acm =
[

0 R

R
⊤ 0

]

(13)L = D
− 1

2 (Acm + I)D− 1
2

(14)E
(0) = [em1 , ..., emn , ec1 , ..., ecm ] ∈ R(n+m)×d

(15)
E
(l) = LeakyReLU

(
LE(l−1)

W
(l)
1 +

(
E
(l−1) ⊙LE(l−1)

)
W

(l)
2

)

(16)ŷCMI = eTmec

(17)

loss = 1

k

k∑

i

[
yi log ŷCMI +

(
1− yi

)
log

(
1− ŷCMI

)]
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GRU   Gated recurrent unit
GIP  Gaussian interaction profile
SVD  Singular value decomposition
VGAE  Variational graph autoencoder
CBOW  Continuous bag of words
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LINE  Large-scale information network embedding
NGCF  Neural graph collaborative filtering model
GBT  Gradient boosting tree
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