
Miao et al. BMC Biology           (2025) 23:89  
https://doi.org/10.1186/s12915-025-02194-y

COMMENT Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Biology

Pangenome graph mitigates heterozygosity 
overestimation from mapping bias: a case study 
in Chinese indigenous pigs
Jian Miao1, Qingyu Wang1, Zhe Zhang1, Qishan Wang1,2, Yuchun Pan1,2* and Zhen Wang1* 

Abstract 

Background  Breeds genetically distant from the reference genome often show considerable differences in DNA 
fragments, making it difficult to achieve accurate mappings. The genetic differences between pig reference genome 
(Sscrofa11.1) and Chinese indigenous pigs may lead to mapping bias and affect subsequent analyses.

Results  Our analysis revealed that pangenome exhibited superior mapping accuracy to the Sscrofa11.1, reduc-
ing false-positive mappings by 1.4% and erroneous mappings by 0.8%. Furthermore, the pangenome yielded more 
accurate genotypes of SNP (F1: 0.9660 vs. 0.9607) and INDEL (F1: 0.9226 vs. 0.9222) compared to Sscrofa11.1. In real 
sequencing data, the inconsistent SNPs called from the pangenome exhibited lower genome heterozygosity com-
pared to those identified by the Sscrofa11.1, including observed heterozygosity and nucleotide diversity. The same 
reduction of heterozygosity overestimation was also found in the chicken pangenome.

Conclusions  This study quantifies the mapping bias of Sscrofa11.1 in Chinese indigenous pigs, demonstrating 
that mapping bias can lead to an overestimation of heterozygosity in Chinese indigenous pig breeds. The adoption 
of a pig pangenome mitigates this bias and provides a more accurate representation of genetic diversity in these 
populations.
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Background
The reference genome is essential for medical, com-
parative, and population genomic analyses. It provides a 
standardized coordinate system that facilitates the com-
parison of various experimental results and establishes a 
consistent framework for genome mapping, annotation, 

and interpretation [1]. Nearly all sequencing-related 
studies start by mapping sequence reads to the refer-
ence genome. However, relying solely on a single refer-
ence genome is insufficient for capturing the complete 
genomic diversity within a species [2]. This limitation 
gives rise to a phenomenon known as reference bias, 
where aligning reads containing non-reference alleles to a 
single reference genome often results in missing or incor-
rect mappings [3, 4]. Such biases can significantly impact 
downstream analyses like calling variants [5–8], quanti-
fying gene expression [9], and accurately determining 
epigenomic peaks [6, 10].

China hosts a rich diversity of indigenous pig breeds, 
accounting for approximately one-third of the world’s pig 
breeds [11]. These breeds are distributed across diverse 
geographical regions in China and display a wide range 
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of phenotypic traits, such as variations in body size, coat 
color, reproductive performance, and disease resistance. 
The extensive genetic diversity of Chinese indigenous 
pigs makes them invaluable resources for understanding 
the genetic basis of economically important traits and 
improving commercial pig breeds through crossbreed-
ing and genetic introgression. The current pig reference 
genome (Sscrofa11.1) was assembled from a female Euro-
pean Duroc pig [12]. However, European pigs exhibit 
substantial genetic divergence from Chinese domestic 
pigs, as a consequence of approximately 10,000 years 
of separate domestication [13]. This divergence means 
that the Sscrofa11.1 may not accurately represent the 
genetic diversity of Chinese pig breeds. To date, almost 
all genomic studies of Chinese indigenous pigs have used 
Sscrofa11.1 for read mapping [14–17], but the impact 
of reference bias in mapping reads from these pigs to 
Sscrofa11.1 remains unclear. Given the complex genetic 
characteristics of Chinese pigs, there is a need for more 
representative genomic references for accurate genetic 
and genomic studies [18, 19].

The recently developed graph genome structure intui-
tively incorporates additional genomic variations into the 
linear reference genome, offering a promising approach 
to mitigate reference bias [20]. Although graph genomes 
have been constructed for several farm animals [21–25], 
few studies have assessed their contribution to reduc-
ing mapping bias. Previous research comparing the 
bovine graph genome with the linear reference genome 
demonstrated that incorporating additional variants 
from whole-genome sequencing (WGS) into a graph 
genome significantly improved mapping and genotyp-
ing accuracy [26]. However, the standard variant call-
ing pipeline for WGS still requires mapping reads to 
a linear reference genome, which introduces its own 
biases. Graph genomes generated directly from multiple 
assemblies may avoid such biases by avoiding mapping 
short sequencing reads to the reference genome [27–30]. 
Therefore, there is a need to compare the performance of 
augmented graph genomes and assembly-derived graph 
genomes in reducing reference bias.

In this study, we initially constructed a pig pangenome 
using ten assemblies from different pig breeds. Specifi-
cally, for the Chinese indigenous Meishan (MS) pig, we 
generated several customized graph genomes by incor-
porating various types of genetic variations from WGS of 
MS pigs into the Sscrofa11.1. Using simulated reads, we 
first quantified the mapping bias of Sscrofa11.1 against 
the MS pig. We then evaluated the impact of different 
graph genomes on the accuracy of read mapping and var-
iant genotyping. Finally, we compared the performance 
of the pangenome and Sscrofa11.1 in analyzing WGS 
and epigenetic sequencing data. Our findings highlight 

the potential for graph genomes to transform genomic 
research, particularly in fields requiring precise genetic 
analysis.

Results
Construction of the graph genomes
The average sequence coverage of the 28 MS WGS was 
23 × , ranging from 15 × to 71 × . We identified a total of 
1,265,789 SNPs, 232,502 short INDELs, and 4391 SVs 
on Sscrofa11.1-chr5 to generate the four customized MS 
graphs. By considering a wide range of pig breeds, the 
single-chromosome pangenome graph contains more 
genetic variation than customized MS graphs. Using the 
Minigraph-Cactus pipeline, we identified 1,346,364 SNPs, 
305,380 INDELs, 1,336,706 multiple nucleotide polymor-
phisms, and 28,585 other complex variants (including 
complex substitutions and SVs). Phylogenetic analysis of 
the assemblies used in pangenome construction high-
lights the clear genetic difference between Sscrofa11.1 
and Chinese local pig breeds (Additional file 2: Fig. S1). 
For the complete pangenome, we identified 30,086,854 
SNPs, 7,894,354 INDELs, and 721,192 complex variants. 
In total, 42,061,158 non-reference sequences (NRSs) 
with a cumulative length of 160 Mb were added to the 
Sscrofa11.1.

Mapping accuracy
The mapping performance of the six graph genomes 
(including four customized genomes from MS pigs, the 
Sscrofa11.1-graph, and the pangenome) and the lin-
ear reference genome (Sscrofa11.1-linear) were evalu-
ated using 10 × reads simulated from MS-chr5. The 
Sscrofa11.1-linear yielded obviously higher number of 
mapped reads than Sscrofa11.1-graph (Fig.  1A). This is 
likely due to the default parameters of BWA-MEM having 
a higher tolerance for alignment errors compared to VG 
Giraffe. For the mapping rates of graph genomes, the four 
customized MS genomes (ranging from 97.72 to 97.82%) 
were slightly higher than the Sscrofa11.1-graph (97.67%), 
while the pangenome (98.14%) was notably higher than 
all other graph genomes (Additional file  1: Table  S1). 
We noticed that some reads lost their mapped positions 
during the process of surjecting from graph structure to 
linear space. The reduction in mapped reads is negligible 
for SNP-graph and SHORT-graph. However, a substan-
tial number of reads lost their mapping coordinates for 
SV-graph, ALL-graph, and pangenome (Fig.  1A, Addi-
tional file  1: Table  S1). The pangenome, which includes 
the most SVs, lost about 1.8% mapped reads after surjec-
tion, resulting in notably lower mapping rates compared 
to other graph genomes. This indicates that adding more 
SVs to the reference genome may result in a greater loss 
of mapping information for reads during the surjection.
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Fig. 1  The mapping and genotyping performance of different genomes. A The ratio of mapped reads in the graph space (x-axis) and in the 
linear space (y-axis). B The accuracy of all mappings, high-quality mappings (mapping quality > 30), and mappings in repeat regions. C The ration 
of different mapping bias. The mapping bias was classified into three types: false-positive mappings, false-negative mappings, and erroneous 
mappings. D Genotyping accuracy of SNPs (left panel) and short INDELs (right panel)
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We first evaluated the mapping performance of BWA-
MEM and VG by comparing the mapping accuracy of 
Sscrofa11.1-linear and Sscrofa11.1-graph (Additional 
file  1: Table  S2). Despite that VG exhibited lower map-
ping rates than BWA-MEM, it achieved higher mapping 
accuracy (94.62% vs. 94.04%, Fig. 1B). We also compared 
the mapping accuracy of different graph genomes using 
VG. All customized genomes achieved slightly higher 
mapping accuracy than Sscrofa11.1-graph, with improve-
ments ranging from 0.03 to 0.22%. The pangenome 
achieved a notable improvement of mapping accuracy 
compared to Sscrofa11.1-graph (95.81% vs. 94.62%). For 
reads with high-mapping quality (quality score > 30) and 
those mapped to repeat regions, the pangenome main-
tained a superior mapping accuracy compared to all 
other genomes (Fig. 1B). Compared to Sscrofa11.1-linear, 
using the pangenome for mapping improved accuracy in 
repetitive regions by 2.27%, which is significantly higher 
than improvements in high-quality mappings (1.16%) and 
all mappings (1.77%).

To mitigate potential biases that may arise from simu-
lating only the chr5, we selected the longest chromosome 
(chr1) and the shortest chromosome (chr18) in the pig 
reference genome for the same simulation analysis. Over-
all, compared to the linear reference, the pangenome 
graph still significantly improved the alignment accuracy 
of reads (Additional file 1: Table S3). Specifically, on chr1 
and chr18, the alignment accuracy increased by approxi-
mately 1.3% and 1%, respectively.

The sources of mapping bias
We classified the sources of mapping bias into three 
types: false-positive mappings, false-negative mappings, 
and erroneous mappings (Fig.  1C, Additional file  1: 
Table  S4). In Sscrofa11.1-linear mappings, about 4.35% 
of reads were false-positively mapped, and 1.6% of reads 
were mapped to incorrect positions. The false-negative 
mapping rate for Sscrofa11.1-linear was almost negligi-
ble. Compared to Sscrofa11.1-linear, the false-positive 
mapping rate for Sscrofa11.1-graph decreased to approx-
imately 0.46% (Fig. 1C). This higher rate of false-positive 
mappings in Sscrofa11.1-linear may be attributed to the 
relaxed default mapping parameters of BWA-MEM. 
Therefore, we tuned the penalty of mismatch penalty 
(parameter B) and read clipping (parameter L) in BWA 
to adjust its tolerance for mapping errors. We found 
that while strict mapping criteria effectively decreased 
the false-positive mappings, it also reduced the over-
all mapping rate and the number of correctly mapped 
reads (Additional file  1: Table  S5). All graph genomes 
reduced erroneous and false-positive mapping to some 
extent. The pangenome was the most effective genome, 
decreasing erroneous mappings of Sscrofa11.1-linear by 

49%. However, the false-negative mappings of pange-
nome were higher than those of Sscrofa11.1-linear (0.4% 
vs. 0.002%). We found that about 99.4% of false-negative 
mappings in pangenome were mapped to NRSs, losing 
their coordinates during surjection. Therefore, the unu-
sually high false-negative mapping rate in the pangenome 
is due to the interference from NRSs.

Genotyping performance
The BAM files from BWA-MEM or those surjected 
from graph space were supplied to GATK4 Haplotype-
Caller for variant calling. Owing to the similar map-
ping accuracy across customized graph genomes, we 
selected only the “ALL” customized genome for geno-
typing. The known variants included 477,930 SNPs and 
159,026 INDELs, with 97.9% of the INDELs being less 
than 30 bp (Additional file 2: Fig. S2). We independently 
evaluated the genotyping accuracy of SNPs and INDELs 
shorter than 30 bp. Generally, the graph genome showed 
higher precision and recall than the linear genome. The 
ROC plot indicated that both the pangenome and “All” 
genome improved SNP genotyping accuracy by reduc-
ing false-positive SNPs (Fig.  1D). The precision and 
recall for “ALL” genome were slightly higher than for the 
Sscrofa11.1-linear genome (precision: 96.95% vs. 96.66%; 
recall: 95.61% vs. 95.48%), while the pangenome obvi-
ously outperformed the Sscrofa11.1-linear genome (pre-
cision: 97.33%; recall: 95.89%). The genotyping accuracy 
of INDELs showed minor differences among genomes. 
The pangenome exhibited a slightly higher F1 value than 
the Sscrofa11.1-linear genome, which was also slightly 
higher than the “ALL” genome (Fig. 1D).

We removed erroneous mappings from the BAM 
files of both the pangenome and the Sscrofa11.1-linear 
genome, and subsequently performed SNP genotyping 
using GATK4 HaplotypeCaller. We observed that after 
filtering out erroneous mappings from the BAM file of 
the linear reference genome, its F1 score increased from 
0.9607 to 0.9655. In contrast, the pangenome exhibited 
a negligible improvement, with its F1 score rising from 
0.9660 to 0.9663. This minimal increase may be attributed 
to the already high mapping accuracy of the pangenome.

Genotyping difference between linear reference genome 
and pangenome
Similar to the simulation analysis, the mapping ratios 
of Sscrofa11.1-linear were higher than those of the 
pangenome (99.46% vs. 97.16% on average, Fig. 2A). We 
assessed mapping errors using the proportion of mate 
reads that mapped to different chromosomes. The map-
ping errors of the pangenome were negligible, while 
Sscrofa11.1-linear showed significantly higher map-
ping errors (1.42% vs. 0.08% on average, Fig.  2A). After 
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removing non-autosome and low-quality SNPs, we found 
that the pangenome identified 322,555 more SNPs than 
the Sscrofa11.1-linear. Most SNPs (> 95%) identified by 
the pangenome and Sscrofa11.1-linear were common, 
with fewer being specific to each genome (Additional 
file 2: Fig. S3). Among the 19,765,180 common SNPs, the 
overall genotyping concordance between pangenome and 
Sscrofa11.1-linear was 99.28%. There were 95,873 SNPs 
with more than 30% inconsistent genotypes, and 632 
SNPs showing completely different genotypes (Fig.  2B). 
To explore if different genotypes enriched in certain 
genomic regions, we used sliding windows to compare 
genotyping concordance. We identified 570 high-incon-
sistent widows with genotyping difference greater than 
0.3 (Additional file  1: Table  S6). We suggest that asso-
ciation results within these genomic regions should be 
interpreted with caution. We identified some genomic 
regions with obviously different genotypes, such as chr2: 
50–72 Mb, chr7: 77–80 Mb, chr9: 44–49 Mb, and chr13: 
160–162 Mb (Fig.  2C). These high-inconsistent regions 
may be more susceptible to the reference mapping bias. 
A total of 24 protein-coding genes were overlap with 
high-inconsistent widows (Additional file  1: Table  S7). 
We detected a total of 1472 distinct QTL loci overlap-
ping with high-inconsistent widows, among which 962 
QTLs (accounting for 65%) are associated with meat 
quality and carcass traits (Additional file  2: Fig. S4 and 
Additional file 1: Table S8). In the QTL database we uti-
lized, there are 31,013 QTLs in total, with 11,568 of them 
related to meat quality and carcass traits. Consequently, 
through hypergeometric distribution testing, these high-
inconsistent widows are significantly enriched for meat 
quality and carcass traits ( P < 1× 10

−20).

Mapping bias leads to overestimation of genome 
heterozygosity
We compared the differences in observed heterozygosity 
and nucleotide diversity of the common SNPs genotyped 
from the pangenome and Sscrofa11.1-linear. A total 
of 6.17% and 6.3% of SNPs showed different values of 
observed heterozygosity and nucleotide diversity, respec-
tively. The top 10,000 SNPs with the largest differences 
in either observed heterozygosity or nucleotide diversity 

showed higher values in Sscrofa11.1-linear (Fig.  2D–E). 
We found that the SNPs called by Sscrofa11.1 have higher 
observed heterozygosity and nucleotide diversity, leading 
to a noticeably smaller number of runs of homozygosity 
(ROH). The number of identified ROHs from pangenome 
was greater than that from Sscrofa11.1-linear (52 vs. 16, 
Fig. 2F). By mapping genomic sequencing reads of Luey-
ang black-bone chickens to the chicken linear reference 
genome and the chicken pangenome, we also found the 
similar phenomenon of heterozygosity overestimation in 
chickens (Fig. 3A–D). A total of 1.08% and 1.11% of SNPs 
showed different values of observed heterozygosity and 
nucleotide diversity, respectively. The top 10,000 SNPs 
with the largest differences in either observed heterozy-
gosity or nucleotide diversity showed significantly higher 
values in the linear reference genome.

Epigenomic data analysis
We compared the differences in peak calling for ATAC-
seq and ChIP-seq (H3K27ac and H3K4me3) using the 
pangenome and the Sscrofa11.1-linear. The results 
from ATAC-seq and ChIP-seq analyses showed similar 
patterns in terms of proportion of significantly different 
peaks. Our analysis revealed that a substantial majority 
(ranging from 97.81 to 99.54%) of the identified peaks 
were not significantly different when comparing peaks 
called against the pangenome and the Sscrofa11.1-lin-
ear (Fig. 4A–C). This high proportion of non-significant 
peaks suggests that the overall landscape of accessible 
chromatin and protein-DNA binding sites is largely 
conserved between the two genomic frameworks. The 
number of Sscrofa11.1-linear-specific peaks was higher 
than that of pangenome-specific peaks (Fig.  4A–C, 
Additional file  1: Tables S9–S11), which may be due 
to the high mapping rates of BWA-MEM. The signifi-
cantly different peaks identified were predominantly 
concentrated in unplaced contigs for both ATAC-seq 
and ChIP-seq (Fig.  4D–F). These unplaced contigs, 
which often contain complex, repetitive, or highly vari-
able regions, may suffer from inaccurately mapping and 
therefore pose challenges for peak identification.

Fig. 2  The comparison of real SNPs called from pangenome and Sscrofa11.1. A The ratio of mapped reads (left panel) and mate reads 
that mapped to different chromosomes (right panel). B The number of SNPs under different genotyping differences. C The Manhattan plot 
showing the distribution of sliding windows under different genotyping differences. The colors of the points are used to distinguish different 
chromosomes. D Distribution of observed heterozygosity for the 10,000 SNPs with the largest differences in observed heterozygosity 
between the pangenome and Sscrofa11.1. E Distribution of nucleotide diversity for the 10,000 SNPs with the largest differences in nucleotide 
diversity between the pangenome and Sscrofa11.1. F The distribution of ROHs identified by pangenome and Sscrofa11.1. The blue squares 
represent the pangenome, while red circles represent Sscrofa11.1

(See figure on next page.)



Page 6 of 12Miao et al. BMC Biology           (2025) 23:89 

396,877

148,538

95,873
73,729

57,494
39,099

21,088
8,240 1,970 632

0

100,000

200,000

300,000

400,000

25 50 75 100
Ratio of genotyping difference (%)

N
um

be
r 

of
 S

N
P

s

R
at

io
 o

f g
en

ot
yp

in
g 

di
ffe

re
nc

e 
(%

)

Chr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

20

40

60

80

100

chr1

chr2

chr4

chr3

chr11

chr10

chr9

chr8

chr7

chr6

chr5

chr17

chr16

chr15

chr14

chr13

chr12

chr18

0.0

0.2

0.4

0.6

Pangenome Sscrofa11.1

N
uc

le
ot

id
e 

di
ve

rs
ity

P<2.2e-16

A B

C

D

E

F

0.0

0.4

0.8

Pangenome Sscrofa11.1

O
bs

er
ve

d 
he

te
ro

zy
go

si
ty

P<2.2e-16

97

98

99

Sscrofa11.1 PanGenome

M
ap

pi
ng

 r
at

io
s 

(%
)

0.0

0.5

1.0

1.5

2.0

Sscrofa11.1 PanGenome
M

at
e 

re
ad

s 
m

ap
pi

ng
 to

 d
iff

er
en

t c
hr

om
os

om
es

 (
%

)

Fig. 2  (See legend on previous page.)



Page 7 of 12Miao et al. BMC Biology           (2025) 23:89 	

Discussion
Advancements in genome sequencing and assembly 
technologies have shown that a single reference genome 
cannot encompass the full genetic diversity of a spe-
cies. Mapping short reads to a single reference genome 
introduces mapping bias, also known as reference bias. 
Although this bias is acknowledged, its impact in pigs 
remains unclear. In this study, we quantified the map-
ping bias of the Sscrofa11.1 reference genome on Chinese 
indigenous pigs using simulated data. We found that the 
permissive default parameters of BWA-MEM lead to a 
high rate of false positives, where sequences mapping to 
NRSs are incorrectly mapped to their similar regions in 
the reference genome. Adjusting BWA-MEM parameters 
can reduce these false-positive mappings [31]. Our sim-
ulation analysis indicated that if unliftable regions were 
considered, the reference bias would be even greater 
than current estimation. Previous research on the 1000 

Genomes Project showed that mapping bias led to over-
estimation of allele frequencies in HLA genes [32]. Simi-
larly, our study found that mapping bias in Sscrofa11.1 
leads to overestimated SNP heterozygosity in Chinese 
indigenous pigs. However, the pangenome graph can 
help mitigate the overestimation of allele frequencies.

Pig genome researches have predominantly relied on 
Sscrofa11.1, despite the availability of some high-quality 
Chinese pig assemblies [22, 33–35]. Using a local assem-
bly often suffers from inconsistent genomic coordinates 
compared to other studies based on Sscrofa11.1, as well 
as from insufficient annotations. Therefore, adopting the 
new genomic coordinates solely for marginal SNP accu-
racy improvements is generally unacceptable. However, 
lifting over variants to another genomic coordinates not 
only results in a loss of variant numbers but also leads to 
incorrect genotyping due to potential inconsistencies in 
the reference alleles [36].
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The pangenome graph effectively reduces mapping bias 
while preserving the coordinate system of the reference 
genome. Our findings demonstrate that the pangenome 
graph significantly outperforms breed-specific graphs, 
likely due to its larger number and higher quality of vari-
ants. Previous studies have shown that breed-specific 
graphs constructed using variants derived from WGS can 
outperform pangenome graphs when using the same var-
iants [25, 35]. Moreover, as long-read sequencing costs 
continue to decrease, obtaining multiple high-quality 
assemblies for a single breed will become increasingly 
feasible. Thus, we infer that customized graphs created 
from multiple assemblies of a specific breed would per-
form better than a general pangenome graph for mapping 
reads from that breed.

The shift from single reference genomes to more cus-
tomized references, like breed-specific or personalized 

references, may become a future trend. For humans, 
the concept of a “Personalized pangenome Reference” 
involves extracting subgraphs from a high-quality pange-
nome using k-mer similarity to create personalized graph 
for each WGS sample [8]. However, the high-quality 
pangenome for farming animals are not yet widely recog-
nized, highlighting the need for continued collaboration 
among pangenome consortia, such as the Bovine Pange-
nome Consortium [37].

To date, both customized genomes and pangenome 
have their drawbacks. Customized genomes are costly 
to generate for each breed, and accurately identifying 
variants without reference mapping is challenging. Con-
versely, pangenome include multiple paths, which results 
in longer alignment times compared to customized 
genomes. For example, when aligning MS pig sequenc-
ing data, reads with significant differences from the 

Fig. 4  The comparison of peaks called from Sscrofa11.1 and pangenome. A–C Volcano plots showing the significantly different peaks identified 
by pangenome and Sscrofa11.1. D–F The number significantly different peaks in each chromosome. The character “U” represents unplaced contigs
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pangenome took an unusually long time to process. This 
issue likely stems from overly complex graph structures 
in certain regions. More efforts are needed to optimize 
the pig pangenome by pruning some of the complex bub-
bles in the graph.

Conclusions
In this study, we quantified the mapping bias of the pig 
reference genome on a well-known Chinese indigenous 
pig using simulated data. Our findings show that a pange-
nome reduces this bias, enhancing variant detection 
accuracy. Variants called from the linear genome show 
higher heterozygosity, which can distort genome-wide 
analyses and genetic parameter estimates, such as runs of 
homozygosity.

Methods
Read simulation
To accurately assess the impact of reference mapping 
bias, we simulated sequencing reads from a Chinese local 
pig assembly (MS pig) [34] and subsequently mapped 
these simulated reads to the Sscrofa11.1. To simplify 
the simulation process, only chromosome 5 from both 
MS assembly (MS-chr5) and Sscrofa11.1 (Sscrofa11.1-
chr5) were selected for simulation analysis. We employed 
nf-LO (v1.6.0) [38] with GSAlign [39] as aligner to build a 
chain file from MS-chr5 to Sscrofa11.1-chr5. The “unlift-
able” regions in MS-chr5 were hard-masked by BEDTools 
(v2.30.0) [40]. We simulated 7.6 million (~ 10 × coverage) 
of 150-bp pair-end reads on the masked MS-chr5 using 
mason2 (v2.0.9) [41]. To establish the ground truth for 
Sscrofa11.1-chr5 coordinates of the simulated reads, we 
adopted CrossMap (v0.7.0) [42] to liftover the coordi-
nates from MS-chr5 to Sscrofa11.1-chr5, using the chain 
file we previously constructed.

To assess the impact of reference bias on genotyp-
ing accuracy, we also simulated 7.6 million reads based 
on a set of known variants and Sscrofa11.1-chr5 using 
mason2. The set of known variants were derived by map-
ping the masked MS-chr5 to Sscrofa11.1-chr5 using 
minimap2 (v2.22-r1101) [43], followed by variants calling 
with Paftools.js.

Customized graph genomes for MS pigs
We collected WGS data from 28 MS pigs, each with a 
sequence coverage greater than 10 × (Additional file  1: 
Table S12). To identify SNPs and INDELs, we employed 
the GTX.CAT germline variants calling pipeline (http://​
www.​gtxlab.​com/​en/​produ​ct/​cat), using the Sscrofa11.1 
reference genome. The identified variants were fil-
tered using GATK (v4.0.5.1) [44], with SNPs filtered 
based on the criteria “QD < 2.0 || MQ < 40.0 || FS > 60.0 
|| SOR > 3.0,” and INDELs filtered using “QD < 2.0 || 

FS > 200.0 || SOR > 10.0.” Variants with genotyping 
rates < 0.8 and alternate allele number > 1 were filtered 
by PLINK (v1.90) [45]. The remaining variants were then 
phased using Beagle (v5.4) [46]. We additionally down-
loaded long-read sequencing data (~ 50 × coverage) pro-
duced by Oxford Nanopore Technologies (ONT) from 
a MS pig [23]. The ONT long reads were aligned to the 
Sscrofa11.1 using NGMLR (v0.2.7) [47], and SVs were 
called using cuteSV (v1.0.8) [48] to generate a SV set for 
MS pigs. Insertions and deletions between 50 bp and 
100 kb were retained in the SV set. The variants identi-
fied from both whole-genome sequencing and ONT data 
were integrated and categorized into four sets: SNPs, 
short variants (SNPs and INDELs), SVs, and all variants 
(including SNPs, INDELs, and SVs). To construct MS pig-
specific graph genomes, we augmented each variant set 
onto the Sscrofa11.1 reference genome using VG (v1.5.6) 
[20], resulting in four customized graph genomes: SNP-
graph, SHORT-graph, SV-graph, and ALL-graph.

Building a pig pangenome
We collected 10 high-quality pig assemblies, includ-
ing seven Chinese indigenous pigs, one Korea pig and, 
two European pigs from NCBI and CNGD (Additional 
file  1: Table  S13). We employed the Mash (v2.3) [49] 
to calculate genetic distances between the assemblies 
and Sscrofa11.1. A phylogenetic tree was built using 
the genetic distance obtained from Mash as input and 
visualized by ggtree (v2.4.2) [50]. To generate the pig 
pangenome graph, the 10 assemblies were additionally 
integrated to the Sscrofa11.1 reference using the Mini-
graph-Cactus pipeline (v2.4.2) [27]. Briefly, the pipeline 
first constructed a graph only containing SVs by progres-
sively mapping other assemblies to the reference genome 
using Minigraph [28]. These assemblies were then rema-
pped to the structural variation graph, and the mapping 
results were used as input for Cactus [51] to construct a 
comprehensive graph that includes all types of variants. 
A pangenome graph containing only chr5 were also built 
for simulation analysis. Since the simulated reads were 
derived from the MS assembly, the MS assembly was 
excluded from the construction of this single-chromo-
some pangenome.

Evaluation of mapping performance
We mapped the simulated reads to pangenome and MS 
customized graph genomes using VG Giraffe (v1.5.6) 
[52]. The mappings from graph genome (GAM files) were 
then surjected to linear coordinate space of Sscrofa11.1 to 
generate BAM files. For comparison, we also mapped the 
simulated reads to the original linear reference genome 
(Sscrofa11.1-linear) using BWA-MEM (v0.7.17-r1188) 
[53] and to a flat graph genome (Sscrofa11.1-graph, with 

http://www.gtxlab.com/en/product/cat
http://www.gtxlab.com/en/product/cat
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no additional variants) using VG Giraffe. This allowed 
us to compare the mapping performance across differ-
ent genome representations under the unified coordinate 
system of Sscrofa11.1. Mapping accuracy was assessed 
by comparing the mapped start position of each read to 
its simulated position. A read was considered correctly 
mapped if the difference between the mapped start posi-
tion and the simulated position was within 10 bp. Addi-
tionally, reads without simulated positions (those that 
unable to be lifted over to Sscrofa11.1) were considered 
correctly mapped if they failed to map to any position. 
Incorrectly mapped reads were categorized into three 
scenarios: (1) erroneous mappings, where reads mapped 
to positions inconsistent with their simulated positions; 
(2) false-positive mappings, where reads without simu-
lated positions mapped to specific locations; and (3) 
false-negative mappings, where reads with simulated 
positions failed to map to any position.

Evaluation of genotyping performance
We employed GATK4 HaplotypeCaller to call variants 
from BAM files produced by VG Giraffe and BWA-MEM. 
We used the submodule vcfeval in RTG Tools (v3.9.1) 
[54] to evaluate the genotyping accuracy by comparing 
the called variants and the known variants provided for 
simulation.

Real WGS data for pigs
A total of 19 MS pigs with sequence coverage > 6 × (Addi-
tional file 1: Table S14) [55] were used to compare the dif-
ference of BWA-GATK (Sscrofa11.1) and Giraffe-GATK 
(pangenome) pipeline. The raw sequencing data were 
obtained from our PHARP database [56]. The adapters 
and low-quality reads were removed by fastp (v0.23.0) 
[57], and the filtered reads were mapped to Sscrofa11.1-
linear and pangenome using BWA-MEM and VG Giraffe, 
respectively. We employed the Sambamba (v1.0.1) [58] to 
mark the duplicates, and then genotyped the variants in 
Genomic Variant Call Format (GVCF) mode using GATK 
haplotype Caller. Multi-sample VCF files were generated 
by merging individual GVCF files for joint variant calling. 
We used Beagle to phase the multi-sample VCF file and 
then extracted SNPs that fulfilled the criteria “QD < 2.0 
|| MQ < 40.0 || FS > 60.0 || SOR > 3.0.” PLINK (v1.90) was 
employed to perform the analysis of ROH with param-
eters “–homozyg-snp 100 –homozyg-kb 500 –homozyg-
density 50 –homozyg-gap 1000 –homozyg-het 1.” The 
shared SNPs from the two pipelines located on auto-
somes were extracted to compare genotyping consist-
ency. The VCFtools (v0.1.17) [59] and PLINK (v1.90) 
were used to calculate the observed heterozygosity and 
nucleotide diversity for each common SNP, respec-
tively. To identify genomic regions with high genotype 

differences, we used a 50-kb sliding window with 5-kb 
step to measure the genotype differences. To explore the 
impact of the genomic regions with high genotype dif-
ferences (> 30%), we overlapped these genomic regions 
with known pig QTL and genes using GALLO (v1.3) [60]. 
The known pig QTLs and gene annotation were collected 
from animal QTL database [61] and Ensembl (http://​ftp.​
ensem​bl.​org/​pub/​relea​se111/​gtf/​sus_​scrofa/​Sus_​scrofa.​
Sscro​fa11.1.​111.​gtf.​gz).

Real WGS data for chicken
To compare the genotype difference of linear reference 
genome and pangenome graph in chicken, we down-
loaded WGS data of 10 Lueyang black-feathered black-
bone chickens from [62] and the chicken pangenome 
from [21]. The downloaded WGS data were processed 
using the same pipeline as that applied to the WGS 
data of pigs. The chicken reference genome (bGalGal1.
mat.broiler.GRCg7b) was used as the linear reference 
genome. We calculated the observed heterozygosity and 
nucleotide diversity for the shared SNPs identified by lin-
ear reference genome and pangenome graph.

Epigenomic data analysis
We downloaded ATAC-seq data from three tissues 
and ChIP-seq data from five tissues (sequenced with 
H3K4me3 and H3K27ac antibodies) of an MS pig from 
[63] (Additional file  1: Table  S15). The quality control 
and mapping of the epigenomic sequencing data were 
performed the same as WGS data. Peaks for each sam-
ple were called using MACS2 (v2.2.9.1) [64]. To compare 
peak differences, we employed DiffBind (v3.12.0) [65] to 
normalize the peaks and then identified statistically sig-
nificant differences between Ssrofa11.1 and pangenome 
using edgeR (v4.0.16). Peaks with P value < 0.05 and 
log10(fold-change) > 1 were considered as significantly 
different (either Sscrofa11.1-specific or pangenome-spe-
cific), while others were treated as common.
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