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Abstract 

Background Carnivorous insects have evolved a range of prey and host capture mechanisms. However, insect pre-
dation strategies in the fossil record remain poorly understood.

Results Here, we describe †Sirenobethylus charybdis n. gen. & sp., based on sixteen adult female wasps in Kachin 
amber from the mid-Cretaceous, 99 Mya (million years ago), and place it in Chrysidoidea: †Sirenobethylidae n. 
fam. The fossils display unique morphological modifications on the tip of the abdomen consisting of three flaps 
from the modified abdominal sternum 6 and tergum and sternum 7; the lower flap formed from sternum 6 is pre-
served in different positions relative to the other flaps in different specimens, indicating that they form some sort 
of grasping apparatus. Nothing similar is known from any other insect; the rounded abdominal apparatus, combined 
with the setae along the edges, is reminiscent of a Venus flytrap. Phylogenetic analysis suggests that the new family 
is a separate lineage close to the base of Chrysidoidea.

Conclusions †Sirenobethylus probably was a koinobiont parasitoid wasp; the abdominal grasping apparatus may 
have been used to temporarily immobilize the host during oviposition. The new fossils suggest that Chrysidoidea 
displayed a wider range of parasitoid strategies in the mid-Cretaceous than they do today.
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Background
Insects are the most diverse group of animals on the 
planet, with more than 1 million described species and 
probably several times more undescribed; recent esti-
mates suggest approximately 5.5 million species in total 
[1, 2]. Their highly adaptable exoskeleton has allowed 
them to radiate and colonize a wide range of habitats 
and develop highly efficient and innovative solutions to 
a range of challenges posed by their surroundings [3, 

4]. Among other mechanisms, carnivorous insects have 
evolved a range of prey capture mechanisms [5, 6]: the 
forelegs of praying mantises (Mantodea) and mantis flies 
(Neuroptera: Mantispidae) [7]; the capture basket formed 
by the spiny legs of adult dragonflies (Odonata); the pre-
hensile labial ‘mask’ employed by dragonfly nymphs [8]; 
the modified fore legs of female dryinid wasps (Hyme-
noptera: Dryinidae) for immobilizing hosts temporarily 
[9]; the hair-trigger mandibles of trap-jaw ants (Formici-
dae: Odontomachus) [10]; the fore and midlegs of heel-
walkers (Mantophasmatodea) for swooping on prey [11]; 
the large hind tarsal claws of hangingflies (Mecoptera: 
Bittacidae) for grasping prey [12].

The fossil insect fauna from the Cretaceous (Albian 
– Cenomanian; 99 Mya) Kachin amber provide unique 
insights into insect evolution [13, 14]; in addition to 
confirming the ancestry of features observed in modern 
organisms, it displays occasional examples of ancient 
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morphologies without obvious modern parallels. With 
regard to potential prey capture mechanisms, the most 
prominent example so far might be the remarkable man-
dibles of the ‘saber-tooth’ haidomyrmecine ants [7, 15]. 
In the present paper, we describe an even more bizarre 
possible host capture/immobilization mechanism in the 
abdomen of a chrysidoid wasp. The rounded abdomi-
nal apparatus, combined with the setae along the edges, 
is reminiscent of a Venus flytrap (Droseraceae: Dionaea 
muscipula), a carnivorous plant using two opposing spe-
cialized leaves to capture insect prey [16].

Results
Systematic paleontology
Order Hymenoptera Linnaeus, 1758.

Infraorder Aculeata Latreille, 1802.
Superfamily Chrysidoidea Latreille, 1802.
Family †Sirenobethylidae Wu, Vilhelmsen & Gao fam. 

nov.
ZooBank LSID: urn:lsid:zoobank.org:act:EAEC75B2 

-83B0-4C0E-A4F8-4F18DA024D15.
Type genus. †Sirenobethylus Wu, Vilhelmsen & Gao 

gen. nov.
Diagnosis. Head hypognathous, with medial line on 

vertex. Antenna with nine flagellomeres, antennal sock-
ets simple, close to posterior margin of clypeus; clypeus 
projecting and acute in lateral view, slightly convex; man-
dibles with four apical teeth along truncate apical mar-
gin; occipital carina distinct, complete. Propleuron not 
exposed in dorsal view; prosternum small, diamond-
shaped, exposed; notauli present. Female macropter-
ous. Second abdominal (first metasomal) segment in 
dorsal view with angular anterolateral corners; tergum 
7 longer than wide, distinctly narrower than other terga; 
sternum 6 wider than other sterna, laterally expanded 
distally, paddle-shaped, projecting posteriorly, poste-
rior margin concave, with a dozen very long, slender 
setae; many thick spines on dorsal surface of sternum 6. 
Sternum 7 with median part accommodating oviposi-
tor shaft dorsally and two lateral parts curving outwards 
before approaching median part distally; median and lat-
eral parts of sternum 7 separated by weakly sclerotized 
areas. Sting sheaths on either side of the sting, apparently 
shorter than sting.

Included genus. †Sirenobethylus Wu, Vilhelmsen & Gao 
gen. nov.

Genus †Sirenobethylus Wu, Vilhelmsen & Gao gen. nov.
ZooBank LSID: urn:lsid:zoobank.org:act:B3548EEB 

-BF75-4CA3-8E63-23C1B399A47C.
Type species. †Sirenobethylus charybdis Wu, Vilhelm-

sen & Gao sp. nov.
Etymology. The new generic name is a combination of 

the Greek ‘sireno-’ meaning ‘female humanlike beings 

with alluring voices in Greek mythology’, and ‘bethylus’, 
from the nominal genus of Bethylidae. ‘Sireno-’ is also a 
reference to Mammalia: Sirenia, as the ‘tail’ of the wasp 
in ventral view resembles that of a manatee. The gender 
is masculine.

†Sirenobethylus charybdis Wu, Vilhelmsen & Gao sp. 
nov. (Figs. 1–3).

ZooBank LSID: urn:lsid:zoobank.org:act:75AEB71E 

-2DCD-4CBA-9EB9-5DEE7CFD0465.
Etymology. The epithet refers to Charybdis, the sea 

monster in Greek mythology who alternately swallowed 
and disgorged copious amounts seawater three times a 
day.

Diagnosis. As for the genus.
Materials. Holotype. Female, CNU-HYM-MA-2015124.
Locality and horizon. The amber specimen was col-

lected from Kachin (Hukawng Valley) of northern Myan-
mar, which is dated at 98.79 ± 0.62 Mya [17, 18].

Description. See Additional file 1: Figs. S1–S16, Dataset 
S1 [19–27], Additional file 2: Table S1.

Discussion
Phylogenetic position of †Sirenobethylus gen. nov.
We describe a new genus †Sirenobethylus, from mid-
Cretaceous Kachin amber, based on sixteen specimens. 
The new genus is readily attributed to the Aculeata by its 
concealed posterior abdominal segments and oviposi-
tor apparatus [28]. †Sirenobethylus has 9 flagellomeres 
and forewing with 8 closed cells, which is different from 
Vespoidea sensu lato [29] and Apoidea (antenna with 10 
flagellomeres in female and forewing usually has 10 or 9 
closed cells) [30, 31]. Therefore, †Sirenobethylus probably 
belongs to Chrysidoidea. We retrieve this superfamily as 
monophyletic (Fig. 4, Additional file 1: Dataset S2) [32], 
unlike some recent molecular studies [33].

All †Sirenobethylus specimens examined are macrop-
terous females; given the unique diagnostic traits in, 
e.g., wing venation, and the somewhat isolated phylo-
genetic position of the new taxon (Fig. 4), it is not pos-
sible to associate these females with any males known 
from Kachin amber. They have the forewing venation 
similar to †Chrysopsenellidae, including a long pter-
ostigma, a closed subdiscal cell, and vein 2 m-cu absent 
(Fig. 1A and D). Therefore, the new genus is much more 
similar to †Chrysopsenellidae than extant groups. How-
ever, †Sirenobethylus has comparatively complete hind 
wing venation, including two closed cells also exhibited 
by †Plumalexiidae and Plumariidae, but different from 
other groups of Chrysidoidea [34]. All these features 
suggest that †Sirenobethylus could be a stem group of 
Chrysidoidea, which is consistent with our phylogenetic 
analyses (Fig. 4, Additional file 3: Table S2). Furthermore, 
†Sirenobethylus has a unique combination of diagnostic 
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characters within Chrysidoidea. For these reasons, we 
place †Sirenobethylus charybdis gen. & sp. n. in its own 
family, the †Sirenobethylidae.

Possibly function of the abdominal apparatus
The abdominal apparatus of †Sirenobethylus, including 
the sixth sternum and the seventh tergum and sternum, 
form three superimposed horizontal flaps, modified 
into a complex composite structure. The compos-
ite structure is round and resembles that of the Venus 
flytrap (Droseraceae: Dionaea muscipula), the car-
nivorous plant that captures insects between its leaves 
[16]. The upper flap (tergum 7) is elongate and tongue-
shaped; the middle flap (sternum 7) extends laterally far 
beyond the dorsal flap and is extensively membranous. 
The lower flap (sternum 6) is expanded distally and 
laterally, forming a paddle-shaped structure (Fig.  1B); 
the thick spines on the dorsal part of the lower flap are 
elongate and scattered in the middle, but shorter and 
more densely placed along the edges (Additional file 4: 
Video S1). Furthermore, micro-CT (micro computed 
tomography) reconstruction shows two apodemes on 
the anterolateral corners of the lower flap, just inside 
the constriction where the sternum 6 meets the pos-
terior margin of sternum 5 (Additional file  5: Video 
S2). The posterior margin of the lower flap has a dozen 

very long, slender setae extending from it. The tip of 
the abdomen often has numerous setae in the extant 
Aculeata, but they are not as long [35, 36]. The eighth 
tergum of †Sirenobethylus is hidden beneath the upper 
flap and the sting and is shorter than the upper flap 
(Fig. 2D). The sting of †Sirenobethylus extends through 
a groove on the dorsal side of the middle flap, below the 
upper flap; the sting sheaths are situated on either side 
of the sting, and are apparently shorter than the sting 
(Fig.  1C). Among the existing Aculeata with stings, 
most have sheaths that are about as long as the sting 
itself [28].

The abdominal apparatus of †Sirenobethylus is unlike 
anything previously reported from any extant wasp or 
indeed any insect known to us [5, 37]. From the mor-
phology and the different states of position of the lower 
flap preserved in different specimens, it seems evident 
that the apparatus had some grasping function. We con-
sider two different possible usages for the apparatus: 1) It 
may have had a function during mating, restraining the 
male. Due to the lack of male fossil evidence, we cannot 
determine the role of the apparatus in the mating pro-
cess. Indeed, it would be unique for insect females to 
restrain the males during mating, rather than the other 
way around. We consider this an unlikely function of the 
abdominal apparatus. 2) It might have served to restrain 

Fig. 1 †Sirenobethylus charybdis sp. nov., holotype (specimen CNU-HYM-MA2015124) female. A Dorsal view as preserved. B The tip of abdomen 
and ovipositor in ventral view, showing trigger hairs (black arrows). C The tip of abdomen and ovipositor in lateral view, showing trigger hairs (black 
arrows), ovipositor (orange arrow) and groove on the sternum 7 (blue arrow). D Habitus reconstruction. Scale bars: A 0.5 mm; B 0.3 mm; C 0.2 mm. 
Abbreviations: S6 sternum 6; T7 tergum 7; S7 sternum 7
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a host temporarily during oviposition. We consider this 
to be the most likely function of the abdominal apparatus 
and will elaborate on this in the following.

The fortuitous preservation of the flaps in different 
relative positions in various specimens of †Sirenobethy-
lus, i.e., ‘open’ with the lower flap depressed relative to 
the middle and dorsal flaps (Figs. 3F–H, Additional file 1: 
Figs. S2, S10, S13) versus ‘closed’ with the ventral flap 
closely appressed to the middle and dorsal flaps (Figs. 1C, 
2D, 3E, Additional file  1: Figs. S4, S5, S7, S9, S11, S14, 
S16) indicates that together they form a grasping appara-
tus. The very elongate hairs along the posterior margin of 
the ventral flap (Figs. 1D, 3C and D) might have served as 
‘trigger hairs’ forewarning the parasitoid of an approach-
ing host and perhaps indicating the host’s position based 
on the number of hairs that the host touches [38]. The 
setae on the lower flap are long and sparse in the mid-
dle, and short and dense along the edges and presumably 
flexible (Fig. 2D); the extensive membranous areas on the 

middle flap (Fig. 2B) appear relatively soft. We speculate 
that the coarse setal brush inside the ventral flap and the 
extensive membranous areas on the middle flap might 
have served to cushion the host during oviposition rather 
than crushing it, indicating that the host may not have 
been permanently incapacitated during the procedure 
and that †Sirenobethylus might have been a koinobiont 
parasitoid rather than a predator [27]. For these reasons, 
we suggest that the abdominal apparatus could have 
served to temporarily grasp and immobilize the host dur-
ing oviposition. In addition, the sting of †Sirenobethylus 
is situated in a groove on the dorsal side of the middle 
flap, and among the sixteen specimens, six specimens 
have stings preserved with grooves directed downward, 
which would allow the †Sirenobethylus to easily sting the 
captured host (Figs. 1C, 3E–G, Additional file 1: Figs. S5F, 
S8G, S10D, S11D, S12H, S16E).

Based on the reconstruction from micro-CT data 
(Fig. 2, Additional file 4: Video S1, Additional file 5: Video 

Fig. 2 Photographs and micro-CT reconstructions (volume renderings) of †Sirenobethylus charybdis sp. nov., paratype (specimen 
CNU-HYM-MA2015119) female. A Dorsal view as preserved. B Micro-CT reconstruction of the tip of abdomen in dorsal view, showing sternum 
6, sternum 7 lateral bar, sternum 7 median bar and the contact point between the two, ovipositor (white arrows). C Micro-CT reconstruction 
of sternum 3 with transverse line. D Micro-CT reconstruction of the interior abdomen in lateral view; blue area indicates extent of tergum 8, green 
area indicates sternum 6. Scale bars: A 0.5 mm; B–D 0.2 mm. Abbreviations: S6 sternum 6; S7 sternum 7; T8 tergum 8
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S2), the lower flap rotates around the point where ster-
num 6 is overlapped ventrally by sternum 5. Adductor 
muscles inserting on the lower side of the anterolateral 
apodemes would raise the lower flap towards the mid-
dle flap, closing the apparatus, whereas abductor mus-
cles inserting on the upper part of the apodemes would 
depress the lower flap away from the middle flap. For 
quick operation, especially when closing the apparatus to 
grasp the host, the muscles would have to be of substan-
tial size. We speculate that the abductors and adductors 
might have arisen from tergum 3 and sternum 3, respec-
tively; these are the largest sclerites in the abdomen and 
each have a transverse line on their anterior part that 
might indicate the attachment sites of the muscles.

The extant Chrysidoidea sensu lato [27, 30] display a 
range of life histories: parasitoids of wood-living beetle 
larvae (Scolebythidae), parasitoids of beetle or Lepidop-
tera larvae (Bethylidae), parasitoids of sawfly cocoons 
(Chrysididae: Cleptinae), egg-parasitoids of stick insects 
(Chrysididae: Amiseginae and Loboscelidinae), klep-
toparasitoids in nests of solitary bees or wasps (Chrysidi-
dae: Chrysidinae), parasitoids of nymphs of webspinners/
embiopterans (Sclerogibbidae) or parasitoids of nymphs 
of Auchenorrhyncha (Dryinidae, Embolemidae) [27]. 

Given this diversity and the lack of information from a 
number of chrysidoid families, including the extant Plu-
mariidae, it is not possible to infer potential hosts for 
†Sirenobethylus by mapping lifestyles on the phylogeny, 
although most of the aforementioned groups have also 
been reported from Kachin amber [39].

The females of some Dryinidae have developed a host 
restraining apparatus on the forelegs [40]; they use their 
chelate fore tarsi to immobilize their elusive hosts (leaf-
hoppers, treehoppers and planthoppers) during oviposi-
tion. These dryinid females are often wingless, have large 
eyes and elongate legs, and pursue their hosts actively 
prior to oviposition [9]. In contrast, †Sirenobethylus was 
probably not able to pursue hosts over longer distances 
given the position of the putative capture apparatus 
at the posterior end of the body and its overall habitus 
compared to dryinid females (smaller eyes, shorter legs). 
However, the elaborate grasping apparatus indicates that 
†Sirenobethylus was indeed targeting highly mobile prey, 
and the hosts might have been homopteran hoppers 
(like for dryinids) or small winged insects, like flies, the 
elongate trigger hairs perhaps eliciting a short posterior 
lunge if a potential target came within range. We imagine 
it would have waited with the apparatus open, ready to 

Fig. 3 Photographs of †Sirenobethylus charybdis sp. nov. females. (A, B) Lateral view of specimens CNU-HYM-MA2015132 
and CNU-HYM-MA2015125. (C, D) Dorsal view of specimens CNU-HYM-MA2015129 and CNU-HYM-MA2015122, showing trigger hair (black 
arrows). (E–H) Abdominal terminal in posterior view of specimens CNU-HYM-MA2015132, CNU-HYM-MA2015125, CNU-HYM-MA2015129, 
CNU-HYM-MA2015122, showing ovipositor (orange arrows), respectively, with upper + middle and lower flap in different relative positions (e.g., E: 
closed; H: fully open). Scale bars: A–D 0.5 mm; E–H 0.2 mm
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pounce as soon as a potential host activated the capture 
response. Our findings suggest that Chrysidoidea dis-
played a wider range of parasitoid strategies in the mid-
Cretaceous than they do today.

Conclusions
We report new mid-Cretaceous fossils of Chrysidoidea, 
suggesting that †Sirenobethylidae is a separate lineage 
close to the base of Chrysidoidea based on phylogenetic 
analysis. Based on our detailed analyses of the morphol-
ogy of the specimens at our disposal, we infer that †Sire-
nobethylus was probably a koinobiont parasitoid wasp, 

the unique grasping mechanism at the tip of the abdo-
men possibly being used for temporary host capture. 
Our new findings indicate that by the mid-Cretaceous, 
some early Chrysidoidea had evolved unique parasitoid 
strategies.

Methods
Material availability
All specimens were collected from Noije Bum hill, about 
18 km southwest of Tanai Village in the Hukawng Valley, 
northern Myanmar (26° 21′ 33.41" N, 96° 43′ 11.88" E) 
[17, 18]. All amber specimens are stored in the Key Lab 

Fig. 4 Bayesian phylogenetic tree based on morphological characters. The large black dots show the age of the Kachin amber species; the branch 
nodes of this phylogenetic tree are not time-calibrated, the geological time scale refers only to the fossil taxa. The numbers on the branch nodes are 
posterior probabilities. Green branches: Chrysidoidea; blue branches: Vespoidea; orange branches: Apoidea. Families with habitus images associated 
indicated in purple: †Sirenobethylus charybdis (Sirenobethylidae), Chrysis ignita (Chrysididae), Pristocera depressa (Bethylidae), Embolemus ruddii 
(Embolemidae), Rhopalomutilla carinaticeps (Mutillidae), Polistes nimpha (Vespidae), Scolia quadripunctata (Scoliidae), Formica rufa (Formicidae)
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of Insect Evolution and Environmental Changes, Col-
lege of Life Sciences, Capital Normal University (CNUB; 
Dong Ren, Curator), Beijing, China. Extant specimens 
examined are stored in the Natural History Museum of 
Denmark, University of Copenhagen, Copenhagen, Den-
mark. The wing venation nomenclature is based on Ras-
nitsyn (1980) [41].

No datasets were generated or analysed during the cur-
rent study.

Optical microscopy, photography
The specimens studied were examined and photographed 
using a Leica M205A stereomicroscope equipped with 
a Leica DFC425 camera and LAS software. The amber 
specimens were examined under a Leica M205C stere-
omicroscope. Figure 1 of the holotype specimen, Fig. 4 of 
habitus images of extant specimens and Additional file 1: 
Fig. S7C and D were taken with a BK + Imaging System 
from Visionary Digital equipped with a Canon EOS 7D 
camera. The other images of the amber specimens were 
taken with a Nikon SMZ 25 microscope with an attached 
Nikon DS-Ri2 digital camera system or a Nikon ECLIPSE 
Ni microscope with an attached Nikon DS-Ri2 digital 
camera system.

Micro‑CT scanning
The paratype CNU-HYM-MA2015119 was scanned at 
the micro-CT laboratory of YKLP (Yunnan Key Labo-
ratory for Paleobiology) with an X-ray microscope 
(3D-XRM), Zeiss Xradia 520 versa. Scanning param-
eters are as follows: beam strength: 60 kV/5w, filter: no, 
resolution: 1.94 μm, exposure time: 5 s, number of TIFF 
images: 1718. Volume rendering and 3D reconstruction 
were performed using the open-source software Drishti 
2.4 [42]. The 3D-reconstruction models of the abdomen 
of the specimen are displayed in Fig. 2, and the original 
scan data has been deposited in Dryad (Wu et al., 2025; 
https:// doi. org/https:// doi. org/ 10. 5061/ dryad. 4b8gt htq9).

Phylogenetic analysis
Our phylogenetic analyses included one species of non-
aculeate wasp (Trigonalidae: Taeniogonalos gundlachii) 
as outgroup/root, 19 species of Chrysidoidea (7 fossil, 12 
extant), 19 species of Vespoidea (19 extant), and four spe-
cies of Apoidea (4 extant) as ingroups to clarify the phy-
logenetic position of the new fossil taxon (see Additional 
file 3: Table S2). We scored 57 morphological characters 
(see Additional file 1: Dataset S3) [43–50].

Bayesian analyses were performed in MrBayes ver-
sion 3.2.7 [51]. Only variable characters were coded, and 
non-applicable morphological characters were treated as 
missing data. Equal transition probabilities between the 
states and among-character rate variation were assumed, 

allowing the different characters to evolve at different 
rates. Bayesian phylogenetic analysis used the Mk model, 
were conducted with four independent runs. Conver-
gence was assessed by the average standard deviation of 
split frequencies (ASDSF < 0.01), and the potential scale 
reduction factor (PSRF < 1.005). After 20 million gen-
erations, the topology converged with an ASDSF < 0.004, 
and PSRF values < 1.001. 50% of the generations were 
then discarded as burn-in. The posterior probabilities 
were plotted as relative branch support in the final tree 
(allcompat. tre) using FigTree v.1.4.3 [52]. The halfcom-
pat. tree can be found in the Additional file 1: Fig. S17.

Abbreviations
CT  Computed tomography
Mya  Million years ago
S2, S3, S4, S5, S6 and S7  Sternum 2, 3, 4, 5, 6 and 7
T2, T3, T4, T5, T6, T7 and T8  Tergum 2, 3, 4, 5, 6, 7 and 8
1st  First
6th  Sixth
7th  Seventh
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