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Abstract 

Background Beneficial insects, including pollinators, encounter various pesticide exposure conditions, from brief 
high‑concentration acute exposure to continuous low‑level chronic exposure. To effectively assess the environmental 
risks of pesticides, it is critical to understand how different exposure schemes influence their effects. Unfortunately, 
this knowledge remains limited. To clarify whether different exposure schemes disrupt the physiology of pollinators 
in a similar manner, we exposed bumble bees to acute or chronic treatments of three different pesticides: acetami‑
prid, clothianidin, or sulfoxaflor. Genome‑wide gene expression profiling enabled us to compare the effects of these 
treatments on the brain in a high‑resolution manner.

Results There were two main findings: First, acute and chronic exposure schemes largely affected non‑overlapping 
sets of genes. Second, different pesticides under the same exposure scheme showed more comparable effects 
than the same pesticide under different exposure schemes. Each exposure scheme induced a distinct gene expres‑
sion profile. Acute exposure mainly caused upregulation of genes linked to the stress response mechanisms, like per-
oxidase and detoxification genes, while chronic exposure predominantly affected immunity and energy metabolism.

Conclusions Our findings show that the mode of exposure is critical in determining the molecular effects of pes‑
ticides. These results signal the need for safety testing practices to better consider mode‑of‑exposure dependent 
effects and suggest that transcriptomics can support such improvements.

Keywords Neonicotinoids, Bombus terrestris, Insecticides, Transcriptomics, Ecotoxicology, Ttoxicogenomics, Safety 
assessments

Background
Safeguarding insect pollinators is critical for ecosystem 
stability, food production, and human welfare [41, 55, 
58, 59]. Agricultural pesticides significantly contribute to 
pollinator declines [15, 27, 50], including through indi-
rect sublethal effects [67]. These declines have prompted 
calls for a better understanding of how different expo-
sure schemes affect physiology and behavior [24, 36, 37]. 
Indeed, exposure in natural environments ranges from 
low to high concentrations over variable periods [38], 
leading to distinct physiological and behavioral outcomes 
(e.g., [2, 62, 67]). For example, chronic long-term expo-
sure to low doses of neonicotinoid pesticides impairs 
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development, foraging, learning, and immunity [14, 68, 
73]. By contrast, acute short-term exposure to higher 
neonicotinoid concentrations disrupts feeding and coor-
dination while increasing locomotor activity [25, 77]. 
Additionally, locomotive behaviors of neonicotinoid-
exposed bees can transition from hyperactive move-
ment after acute exposure to hypoactivity when exposed 
for a more extended period [36, 37]. This variability in 
effect challenges the accuracy of risk assessments [20] 
and our ability to forecast population responses. Conse-
quently, it is essential to understand how different expo-
sure schemes impact organisms differently. So far, the 
extent to which different exposure schemes have distinc-
tive molecular and physiological effects is unknown.

Focusing assessment of pesticide toxicity on a few 
selected phenotypes can result in contradictory meas-
ures of their negative effects [74]. In contrast, advances in 
transcriptomics enable us to measure the genome-wide 
effects of pesticide exposure [28, 42]. Indeed, simulta-
neously quantifying the expression levels of thousands 
of genes provides high-dimensional data that enables 
assessment of many aspects of insect physiology. Apply-
ing higher-resolution approaches could enable new 
insights into the impacts and risks of pesticide expo-
sure. Several recent studies have provided insights into 
transcriptomic profiles induced by pesticide exposure, 
including genes related to macronutrient metabolism, 
immunity, learning, and memory [3, 4, 10, 46, 48, 74], 
showing that this technique can detect subtle, informa-
tive gene regulatory responses. Nevertheless, a critical 
knowledge gap remains regarding the molecular changes 
that underpin acute and chronic responses to different 
pesticides in pollinating insects.

Here, we aimed to test whether different pesticide 
exposure schemes disrupt physiology of a beneficial pol-
linator species in similar manners. For this, we exposed 
microcolonies of Bombus terrestris bumble bees to 
“acute”, i.e., short-term high-concentration and “chronic”, 
i.e., long-term low-concentration pesticide treatments, 
and measured activity levels of all genes. Across all treat-
ments we used microcolonies from the same ten source 
colonies to increase power and control for genetic back-
grounds (Additional File 1: Fig. S1). To investigate a 
range of outcomes, we performed experiments with 
three widely used pesticides: The neonicotinoid pes-
ticides acetamiprid and clothianidin and the sulfoxi-
mine pesticide sulfoxaflor (Fig. 1A–C). Acetamiprid is a 
widely used neonicotinoid globally; clothianidin, albeit 
restricted in the European Union, is still used worldwide 
and exported from the EU in large quantities [17]; sul-
foxaflor’s use has been increasing [8, 65] despite recent 
restrictions within the EU and reports of its high toxicity 
to bees [19]. We measured brain gene expression because 

each of these pesticides target nicotinic acetylcholine 
receptors (nAChRs) which are common in the brain [79], 
and because the brain governs behavioral responses. We 
hypothesized that exposure to different pesticides would 
lead to distinct gene expression responses, and that acute 
exposure to a pesticide would primarily affect the same 
genes as chronic exposure, but with a greater intensity.

Results
Acute exposure causes stronger and broader changes 
than chronic exposure
We exposed bumble bee microcolonies to acute 
(21.5 ppb, 48 h) and chronic treatments (4.4 ppb, 12 days) 
of acetamiprid, clothianidin, and sulfoxaflor, and the con-
trol, and sequenced RNA from pools of brains of three 
workers per microcolony (Fig.  1A–C). Acute exposure 
was always more disruptive than chronic exposure, 
resulting in greater numbers of differentially expressed 
genes. For example, acute exposure to clothianidin 
resulted in 3.5 times more differentially expressed genes 
than chronic exposure (Fig.  2A). Similarly, changes in 
expression amplitude among the 20 genes with the most 
pronounced changes after acute exposure were 2.7 times 
greater than after chronic exposure (t-test, p <  10−6). In 
line with these patterns, principal component analy-
ses showed that the expression profiles of chronically 
exposed microcolonies were more similar to control col-
onies than to acutely exposed colonies (Fig. 2B).

The effects of chronic exposure were also more con-
sistent across the microcolonies than the effects of 
acute exposure (20% lower standard deviation; GLMM 
p <  10−16). The difference in variation may be because the 
organism’s physiology has more time to adjust over the 
12 days of chronic exposure. Alternatively, genetic varia-
tion between colonies may affect the thresholds that trig-
ger a response, as well as the rate at which the pesticide is 
taken up by the hemolymph and reaches the brain (Addi-
tional File 1: Fig. S2 and S3).

Different exposure schemes drive different types 
of changes
There were major differences in the magnitude of effects 
between pesticides: Acute exposure to clothianidin and 
acetamiprid respectively changed the expression of 25 
and 6 times more genes than acute exposure to sulfoxa-
flor. Chronic exposure to clothianidin similarly caused 
substantially more changes than acetamiprid or sulfoxa-
flor (Fig.  2A). Nevertheless, we observed discrepancies 
in the molecular responses between acute and chronic 
treatments. Expression levels of a set of 61 genes changed 
consistently in response to all acute treatments (40 times 
more than expected by chance, SE = 0.015; hypergeo-
metric test, p <  10−5, Fig.  2C). Moreover, 89% of genes 
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differentially expressed under acute exposure to sulfoxa-
flor were differentially expressed in at least one other 
acute treatment. However, none of these overlapping 
genes were differentially expressed in chronic exposure 
treatments.

Although chronic exposure affected considerably fewer 
genes than acute exposure, the effects of different pesti-
cides also overlapped (Fig. 2A). In particular, expression 
of the antimicrobial peptide defensin was on average 
32-fold lower in chronic treatments, while expression 
of another antimicrobial peptide, abaecin, was 11-fold 
lower after exposure to clothianidin and acetamiprid 
(Fig.  3B). The other genes most significantly affected 
by chronic clothianidin exposure included the patho-
gen response genes kynurenine/alpha-aminoadipate 
aminotransferase and antichymotrypsin-2, which were 
respectively downregulated tenfold and threefold relative 
to the controls. Changes in expression levels of immune 
genes may explain the decreased immunocompetence of 

bees exposed to neonicotinoids [56]. Intriguingly, expres-
sion of these immune genes was unaffected by acute 
exposure.

Acute exposure to every pesticide caused upregulation 
of detoxification and stress‑response genes
Among the 61 genes differentially expressed by all acute 
treatments, 91% were upregulated rather than down-
regulated (X2 = 23.8, p <  10−6). These included well-
known detoxification genes (e.g., P450 cytochromes, 
ATP-binding cassette transporters, and UDP-glyco-
syltransferases). Surprisingly, none of the cytochrome 
P450 genes from the CYP9Q subfamily were upregu-
lated. Genes in this subfamily are conserved across bee 
species and can determine neonicotinoid sensitivity [29, 
45, 72]. The three bumble bee CYP9Q genes most able 
to metabolize neonicotinoids have high baseline expres-
sion in the brain (representing 33% of the total expression 
of 51 cytochrome P450s,X2 = 21.5, p <  10−6). The lack of 

Fig. 1 Experimental design. A Microcolonies were exposed to a control treatment or to one of three pesticides: sulfoxaflor, acetamiprid, 
and clothianidin. B Seven microcolonies of six callow workers were obtained from each of the ten bumble bee source colonies and assigned to one 
of the seven treatments; RNA extractions focused on pooled brains of three workers per microcolony. C After a 2‑day adjustment period, we began 
chronic exposure; acute exposure began after 12 days to control for age of workers and day of sampling
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upregulation in these genes, combined with their gener-
ally high baseline activity, suggests that detoxification 

mechanisms are constantly operational rather than being 
activated by exposure to specific compounds.

Fig. 2 Gene expression changes and survival rates under chronic and acute exposure schemes. A Numbers of genes differentially expressed 
in each treatment compared to the control. B Principal component analysis of all microcolonies. The first principal component separates chronic 
and acute treatments; for the first two principal components, chronic treatments overlap with the control (blue). C Euler diagram showing relative 
numbers of differentially expressed genes and overlaps between treatments (DESeq2 Wald test cut‑off of FDR 0.05). D Survival rates; Dashed blue 
lines indicate the control

Fig. 3 Selected genes affected by chronic and acute exposure schemes. A Maximum‑likelihood tree of all cytochromes P450 in bumble bee (51 
genes) and honey bee (49 genes). Filled circles highlight differentially expressed genes. Yellow area highlights CYP9Q genes known to detoxify 
neonicotinoids [29],none of these were upregulated. Blue area highlights genes consistently differentially expressed under acute exposure. 
Numbers indicate bootstrap values of nodes. B Antimicrobial peptide genes were downregulated under chronic treatments. C KEGG pathways 
enriched in genes differentially expressed under all acute treatments. D Peroxidase was upregulated in all acute treatments. E After acute 
clothianidin exposure, two nAChR‑subunits whose Drosophila orthologs have particularly high affinity to clothianidin are downregulated, as is the 
vesicular acetylcholine transporter, while a chaperone which assists nAChR folding is upregulated. Boxplot significance codes: * < 0.05; ** < 0.01; 
*** < 0.001
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In contrast, expression of a subset of cytochrome P450 
genes in the CYP6Q subfamily increased by an average of 
248-fold in acute treatments. This subset of genes likely 
represents a recent expansion in the bumble bee (Bom-
bus spp.) lineage because a phylogenetic reconstruction 
indicates a lack of orthologs in the honey bee and rela-
tively short branch lengths (Fig.  3A, Additional File 1: 
Table S1). The dramatic upregulation of these genes may 
help metabolize the pesticides or their metabolites, or 
it may contribute to a generic stress response. Indeed, 
other stress-response components included upregula-
tion of ascorbic and lipoic acid metabolism and peroxi-
dase (Fig. 3C, D) likely indicating responses to oxidative 
stress which results from calcium ion influx after nAChR 
overstimulation [30, 75]. Furthermore, acute exposure 
to acetamiprid and clothianidin caused upregulation of 
peptide and fatty acid metabolism. This upregulation may 
help compensate for the detrimental impacts of cellular 
stress, as indicated by analogous changes in mice [80].

Acute and chronic clothianidin exposure schemes trigger 
mortality through different mechanisms
Although we primarily compared the effects of insecti-
cides on bumble bee brains, we also measured survival, 
enabling us to examine the links between gene expression 
and mortality. Acute and chronic exposure to the most 
toxic compound, clothianidin, led to the death of 54% 
and 29% of bees, respectively (Cox proportional hazard 
models; both p <  10−6; Fig. 2D). The cumulative doses of 
clothianidin consumed under both exposure schemes 
were comparable. This indicates that the effects of clo-
thianidin do not cause stronger effects over time and 
that bees are better able to tolerate long-term lower-level 
exposure than acute exposure.

Both acute and chronic clothianidin treatments 
affected a set of 292 overlapping genes, more than 
expected by chance (hypergeometric test, p <  10−6). 
However, most of the affected genes (90% and 64%, 
respectively) were treatment specific. Intriguingly, acute 
exposure upregulated apoptosis-inducing genes, suggest-
ing immediate lethal effects, while such links were absent 
after chronic exposure. Acute exposure to clothianidin 
also caused changes in the expression of genes important 
for nerve function, including upregulation of synaptic 
vesicle proteins involved in neurotransmitter transport 
and release, and downregulation of neuroligins which are 
crucial for synapse stability. Acute clothianidin exposure 
also downregulated nAChR subunits α1 and β1, and the 
vesicular acetylcholine transporter, and upregulated the 
acetylcholine receptor chaperone which supports assem-
bly of nAChRs (Fig. 3E). Different changes stood out after 
chronic exposure to clothianidin, including downregula-
tion of genes associated with the respiratory transport 

chain and ATP synthase complex (Fisher’s exact test, all 
p-values < 0.005).

Discussion
Contrary to our initial hypothesis, the pesticide expo-
sure scheme was a stronger determinant of bumble bee 
brain gene expression profiles than the type of pesticide. 
Indeed, we found more overlap among affected genes 
after acute exposure to different pesticides than between 
acute and chronic exposure to individual pesticides. This 
indicates that despite differences between pesticides in 
baseline toxicity and in chemical structures, the effects of 
exposure are strongly determined by exposure duration 
and intensity. Moreover, the pesticides  tested here do 
not show time-reinforced toxicity; the strength of effects 
does not increase over time. Instead, the effects differ 
altogether. Acute treatments cause severe and immedi-
ate stress responses, while chronic exposure gradually 
impairs immunity and energy metabolism. Thus, dif-
ferent exposure schemes pose distinct challenges for 
pollinators.

Our results indicate potential links between molecu-
lar alterations and previously observed phenotypical 
changes. For instance, chronic clothianidin exposure 
downregulated genes related to the respiratory trans-
port chain and ATP production, while acute exposure 
disrupted nerve function and neurotransmitter genes. 
These alterations parallel observed changes in locomo-
tor behaviors: acute exposure increases locomotor activ-
ity, potentially due to synaptic overstimulation, while 
chronic exposure reduces locomotor activity, likely due 
to changes in energy metabolism [36, 71]. Acute expo-
sure to clothianidin caused downregulation on α1 and 
β1 nAChR subunit. Remarkably, orthologs of these 
subunits in the fruit fly have particularly high affinity to 
clothianidin [44]. These changes in gene expression sug-
gest that some nAChRs in the brain may be reassem-
bled after acute exposure, potentially to prevent further 
toxic effects. Moreover, downregulation of key immunity 
genes under chronic exposure to all three pesticides may 
explain the lower immunocompetence of bees exposed to 
neonicotinoids [56].

In agricultural settings, pollinators may survive pesti-
cide exposure but suffer from sub-lethal disruptions that 
jeopardize their long-term abilities to reproduce and to 
pollinate crops and wild plants. Estimating the risks of 
such diverse detrimental impacts is essential for ensur-
ing the environmental safety of pesticides. Traditionally, 
the acute  LD50 dose which kills 50% of individuals over 
24 or 48 h has often been used as basis for calculating the 
risk posed by pesticides in a variety of exposure scenar-
ios (OECD Test no. 213, [53]; OECD Test no. 214, [52]). 
Subsequent developments have included chronic 10-day 
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pesticide exposure assays that explicitly record behav-
ioral abnormalities (OECD Test no. 245, [54]). These 
behavioral abnormalities are used as a proxy for sublethal 
effects and have recently been integrated into EU regu-
latory guidance [20]. While these improvements toward 
including sub-lethal effects are commendable, the new 
protocols are still unlikely to capture the full spectrum of 
changes detected here by gene expression profiling.

By comparing two neonicotinoids and a sulfoximine, 
we reveal gene expression disruptions that likely repre-
sent general patterns relevant to nAChR-targeting insec-
ticides. Such compounds account for 24% of the global 
insecticide market, the largest share among all chemical 
classes [70]. Although regulators have banned clothia-
nidin and restricted sulfoxaflor throughout most of the 
native European range of B. terrestris, these compounds 
can persist and accumulate in soils for years [26]. For 
example, a recent study reported that the banned neoni-
cotinoid imidacloprid ranked among the most common 
compounds found in colony pollen stores of bumble bees 
in Europe [50]. Moreover, clothianidin [18]  is still com-
monly used worldwide [63]. EU countries also export 
large amounts of clothianidin globally. For example, in 
2022, 656 tonnes of clothianidin were shipped to non-EU 
countries where its use is still permitted in some form 
(e.g., USA, Canada, China, Brazil, India, Indonesia, [17]). 
Furthermore, clothianidin is a breakdown product of thi-
amethoxam, which is still used under emergency deroga-
tions in Europe. A Greenpeace/Unearthed investigation 
found that 2 years after the 2018 ban, EU countries issued 
at least 67 different “emergency authorisations” for out-
door use of these chemicals. Sulfoxaflor’s use has been 
increasing [8, 65] despite recent restrictions within the 
EU and reports of its high toxicity to bees when applied 
during flowering [19, 33].

Despite general recommendations to not spray pesti-
cides onto flowering plants that have been in place since 
2013, honey bees still had high levels of these compounds 
in their hives [47], indicating their spread and persistence 
in the environment [32]. Neonicotinoids are also applied 
as a seed treatment. Therefore, although not applied 
during the flowering period, the systemic nature of the 
compound means it permeates plant tissues, includ-
ing pollen and nectar, which are accessible to bees. The 
residues persist years after application [82], creating 
long-term exposure hazards for pollinators. For exam-
ple, hibernating underground bumble bee queens prefer 
neonicotinoid-contaminated soils, which puts them at 
risk of exposure [60]. Moreover, bumble bees, including 
B. terrestris, are globally used as commercial pollinators 
in greenhouses [22], making them vulnerable to exposure 
to compounds that may be restricted within their geo-
graphic range.

Therefore, even with certain compounds facing restric-
tions across different geo-political regions, under-
standing their differential impacts remains essential, as 
exposure risks persist through international trade, envi-
ronmental contamination, and the continued develop-
ment of similar cholinergic pesticides. Furthermore, our 
results highlight how length of exposure can affect an 
organism in fundamentally different ways. For many pol-
linators, including worker bumble bees, 12 days of expo-
sure constitutes a significant portion of their adult life. By 
examining how environmental stressors influence meta-
bolic processes during this period, we can deepen our 
understanding of how stress affects individual pollinators 
and in turn how it may affect colony health and resilience 
overall. In the early days of examining gene expression to 
human diseases, only little information existed to help 
link changes in individual genes to tangible health out-
comes [31]. Similarly, we cannot yet directly link exact 
changes in gene expression to the ability of pollinators 
to survive, reproduce, or pollinate. However, based on 
our understanding of cellular processes, changes in the 
expression levels of many genes undoubtedly indicate 
substantial disruption to basic biological functions.

Conclusions
Our findings show how measuring expression levels 
of thousands of genes can reveal previously unknown 
impacts of pesticides on beneficial species. Our work also 
highlights the complexities of such effects. We show that 
different exposure schemes can cause different effects in 
the brain. However, it is important to note that effects of 
exposure also vary substantially across body parts [78]. 
Here, we focused on two neonicotinoids and a sulfoxi-
mine which all target nicotinic acetylcholine receptors 
(nAChRs). The use and diversity of nAChR-targeting 
pesticides continue to increase [26, 66], and we look for-
ward to work clarifying how the patterns we observed 
here extend to pesticides with different modes of action, 
to other stressors, and to other beneficial insect species. 
Broader use of high-resolution approaches could signifi-
cantly expand our understanding of how environmental 
stressors impact insect health. Just as gene expression 
profiling revolutionized the diagnosis and understanding 
of human disease, we anticipate it will play a pivotal role 
in the development and regulatory evaluation of novel 
pesticides.

Materials and methods
Pesticide solution preparation
Bumble bees were exposed to three pesticides that target 
nicotinic acetylcholine receptors (nAChRs): clothianidin, 
acetamiprid, or sulfoxaflor (Sigma Aldrich, UK). We used 
the same concentrations for each compound to allow for 
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direct comparisons. We based the chronic concentration 
on the residues found in pollen and nectar [6, 12, 57, 61, 
64]. We established the acute concentration based on the 
reports on clothianidin, the most toxic compound among 
these tested here to ensure survival of the bees and ade-
quate replication levels for RNA sequencing. Reports 
suggest that 24  h-LD50 for clothianidin varies greatly 
between colonies of A. mellifera ligustica, ranging from 
9.69 to 41.96 ppb [40], we decided on a dose in the mid-
dle of that range. We established the chronic concentra-
tion at 5 μg/L and the acute at five times higher, 25 μg/L. 
We prepared pesticide stock solutions by dissolving pes-
ticides in acetone to a concentration of 2.5 and 0.5 mg/
mL and stored in darkness at − 20℃. Subsequently, we 
diluted the stock solutions using 30% sucrose solution to 
5 and 25 μg/L feeding solutions. Given that the weight of 
a liter of 30% sucrose solution is 1130 g, the final concen-
trations were 4.4 and 22.1 ppb. To avoid pesticide degra-
dation, we stored feeding solutions in darkness at 4℃.

Microcolony setup and sampling
We acquired ten source colonies of Bombus terrestris 
audax from a commercial breeder (Agralan Growers 
UK). We transferred the queen, existing brood and 20 
workers to wooden boxes (30 cm long/20 cm wide/15 cm 
deep) separated into two equal-sized chambers (foraging 
and nesting area). We provided each colony with ad libi-
tum 30% sucrose solution and organic honeybee-col-
lected pollen (General Food Merchants LTD). We marked 
all twenty workers using water-based markers (POSCA, 
UK) and screened the colonies daily for the emergence 
of new workers. All source colonies were 2  weeks old 
when we started setting up the microcolonies. Six callow 
workers that emerged within 24 h were used to assemble 
microcolonies. Over 14  days, we obtained seven micro-
colonies from each source colony in a staggered manner, 
depending on the pace of worker production (Additional 
File 1: Fig. S4).

Each microcolony was kept in a single-chamber 
wooden box (12 cm long/12 cm wide/10 cm deep) and 
provided with organic pollen ad  libitum and a single 
dose of nest substrate (5 parts organic pollen to 1 part 
30% sucrose solution in a 2.5-cm Petri dish). Each micr-
ocolony received 10  mL of 30% control sucrose solu-
tion across two 5-mL syringes. We assigned the control 
treatment or one of the six pesticide treatments to all 
microcolonies in a randomized fashion. Our design 
ensured that treatments were assigned to microcolonies 
created at various stages of the source colony devel-
opment. We replaced the control syringes with two 
syringes containing pesticide solution (a) 4.4 ppb after 
2 days for chronic exposure or (b) 22.1 ppb after 12 days 
for short-term, acute exposure, so that all workers were 

of the same age at the time of sampling. We changed 
pollen and sugar solution every 48  h between 11:00 
am and 1:00  pm. All colonies remained in darkness at 
24℃, and we used red light during feeding and sam-
pling. All sampling took place between 1:00  pm and 
2:00  pm to minimize the effects of circadian rhythms 
on gene expression profiles. We placed individual 
workers in 2-mL screw-cap cryovial tubes, rapidly sub-
merged them in liquid nitrogen, and stored the sam-
ples at − 80℃. We obtain ten replicates per treatment 
except for acute clothianidin were we obtained eight 
replicates because the mortality rates in two source 
colonies were continuously too high. Our experimental 
design builds on insights from previous similar studies 
[4, 10] in three key ways: (I) We used microcolonies to 
ensure that bees from different genetic backgrounds 
were exposed to each treatment; (II) We pooled RNA 
from three individuals (from the same microcolony and 
treatment) to reduce the impacts of between-individual 
variation in food intake, physiology, and behavior; (III) 
We used more than twice the number of biological rep-
licates as in the previous study.

Survival analysis
Because we had to collect enough living bees per micr-
ocolony to establish a sufficient sample size for RNA-
seq, we did not measure the LD50 values for each 
treatment. However, we collected data on the survival 
of individual bees throughout the experiment during 
feeding. We fitted Cox proportional hazards regres-
sion models to conduct pairwise comparisons of sur-
vival between each treatment and the control utilizing 
survfit function from the survival v.3.5–7 R library. For 
chronic treatments, we compared the data from the 
entire experiment duration (14  days). For the acute 
treatments, we only compared survival data from the 
last 2 days of the experiments when the microcolonies 
assigned to acute treatments experienced exposure.

RNA extraction, library preparation, and high‑throughput 
sequencing
In the absence of a queen, one bumble bee worker can 
become dominant, which induces development of big-
ger ovaries. We dissected abdomens to examine ovarian 
development and excluded dominant workers from fur-
ther steps as significant ovarian development may change 
gene expression patterns. We dissected brains on dry 
ice and immediately placed them in a homogenization 
tube. We randomly selected three non-dominant work-
ers per microcolony and pooled brains for further steps. 
We homogenized the dissected brains in TRIzol using a 
FastPrep96 (45 s at 1800 RPM). We isolated RNA using 
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chloroform and purified it with Genaxxon RNA Mini 
Spin Kit, applying DNase I on-column digestion. We 
prepared cDNA libraries using the NEBNext® Ultra™ 
II Directional RNA Library Prep Kit for Illumina. We 
altered the standard protocol using one-third volumes 
of enzymes and buffers and 300  ng of total RNA input 
with 14 PCR cycles. Library size was quantified using 
TapeStation 2200 (Agilent, UK) and Qubit 2.0 fluorom-
eter. Libraries were sequenced at QMUL Genome Centre 
on NextSeq 500 generating a mean of 36 million 40  bp 
paired-end reads per sample (from 22.8 million to 52.2 
million reads).

Quality assessment of raw reads
Initially, we assessed the quality of raw reads using 
FastQC v0.11.9 [1]. To evaluate alignment qualities, we 
respectively aligned RNA-seq samples to the B. terrestris 
genome and transcriptome (Ensembl Metazoa release 52) 
using STAR v2.7 [16] and kallisto v0.46 [7]. We processed 
STAR alignments using the RNA-seq module of Quali-
map v2.2.1 [51] and summarized the results from FastQC 
and Qualimap using MultiQC v1.9 [21]. Four samples 
failed our quality-control checks due to poor alignment 
(< 65%) and unusual GC content, which can result from 
PCR errors or contamination [11]. We retained 64 sam-
ples in total, including 10 replicates for controls and all 
chronic treatments and 8 replicates for each acute treat-
ment (Additional File 1: Table S2).

Differential gene expression analysis
We summarized kallisto pseudo-aligned transcript abun-
dances to the gene level with tximport v1.14 [69] using 
transcript-to-gene tables retrieved with biomaRt v2.48.3. 
We excluded genes with low expression levels applying a 
cut-off of at least eight samples with a count of 10 tran-
scripts or higher, retaining 9735 out of 10,661 genes with 
mapped reads. We transformed counts using the vari-
ance stabilizing transformation (VST, blind = FALSE) and 
performed principal component analysis on all remaining 
genes to assess the relationships of the samples. To detect 
differentially expressed genes between exposure treat-
ments and the control, we applied Wald tests on median-
of-ratios normalized counts in DESeq2 v1.32.0 [43]. We 
included treatment and source colony as factors in the 
model design. We report genes as differentially expressed 
using a significance cut-off of 0.05 after false discovery 
rate adjustment [5] of the Wald test p-values (FDR).

Gene Ontology enrichment analysis
To test which Gene Ontology terms were overrepre-
sented in response to the treatments, we performed gene 
ontology enrichment analysis using g:GOSt option of 
gprofiler2 v0.2.1 [39]. We sorted differentially expressed 

genes (Wald test’s FDR < 0.05) for each treatment by 
adjusted p-values change values and set the custom 
background genes to all genes expressed in control brain 
samples. We report Gene Ontology terms as enriched 
applying corrected for multiple testing g:SCS threshold of 
0.05 derived from Fisher’s exact test.

Cytochrome P450 expression analysis and phylogeny
We identified 51 putative cytochrome P450 orthologs 
for B. terrestris searching the proteome for the Pfam 
PF00067.25 domain and extracted them using HMMER 
v3.1b2 applying the –cut_ga option, which removes 
domains with conditional E-values greater than the inter-
nally established threshold. We selected the longest iso-
forms of the 51 B. terrestris and 49 A. mellifera P450 [13] 
cytochromes P450, and used the mafft-linsi option of 
MAFFT v7.480 [35] to perform multiple sequence align-
ment of amino acid sequences. We trimmed the aligned 
sequences using Jalview v2.11 [76] and TrimAl using 
-automated1 option [9]. We used IQ-TREE v2.0.3 [49] 
to perform maximum likelihood phylogenetic inference 
using the -MFP option [34].

Variable number of replicates in treatment groups
To examine whether the statistical power of detection 
of the differentially expressed genes changes due to the 
uneven number of replicates across exposure groups (8 
in acute treatments and 10 in chronic treatments), we 
ran the analyses again using eight replicates per treat-
ment. We randomly selected 8 samples for the control 
and chronic treatment and repeated the Wald test as 
implemented in DESeq2. We ran this analysis over 50 
iterations making sure that the random exclusion of sam-
ples is unique for each iteration. We identified genes as 
differentially expressed applying a cut-off for false dis-
covery rate (FDR) < 0.05. We built a distribution of the 
number of differentially expressed genes detected at each 
iteration to assess the probability of obtaining a higher 
number of differentially expressed genes for each of the 
acute treatments when the number of replicates is equal 
in all groups. None of the trends we report here changed 
under the alternate scenarios. Our analysis indicates that 
reducing the number of replicates in chronic treatments 
does not increase the power of detection of differentially 
expressed genes for acute treatments (permutation test, 
all p > 0.09). Therefore, we decided to retain all the suit-
able samples in downstream analysis to allow for a better 
estimation of the gene expression levels.

Significance of overlaps of differentially expressed genes 
between treatments
To determine if the overlap between differen-
tially expressed genes across various treatments was 
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statistically significant, we used a simulation-based 
method, anchored in a hypergeometric testing frame-
work. Specifically, we created 10,000 unique samples by 
randomly selecting genes from a combined pool of all 
expressed genes without replacing them once drawn. The 
number of genes drawn was determined by the actual 
number of differentially expressed genes under each 
treatment. For each comparison, we assessed the extent 
of overlap between treatments and compared to the 
actual observed overlap in the real data. We calculated 
the p-value as the proportion of simulated overlaps that 
were at least as extreme as the observed overlap, adjusted 
for the observed case itself.

Food intake measurements
Every other day, we measured the food intake of each 
microcolony. We calculated the median pesticide dose 
[μg] per bee over exposure time for both acute and 
chronic exposures. Microcolonies exposed to acute clo-
thianidin treatment, consumed a median of 0.017  μg of 
clothianidin, while microcolonies exposed to clothianidin 
at chronic regime consumed 0.019  μg. For acetamiprid, 
microcolonies consumed on average 0.036 and 0.039 μg 
of the compound under acute and chronic exposure 
respectively. Microcolonies exposed to sulfoxaflor con-
sumed a median of 0.038 and 0.040 μg of the compound 
under acute and chronic exposure respectively.

We used a linear model to assess differences in food 
intake between the control and chronic treatment 
groups. Specifically, we used the average daily food intake 
per bee within a microcolony as the response variable 
and included the queenright colony of origin and the 
interaction between the day of exposure and treatment 
as explanatory variables. Our model returned a negative 
coefficient of − 0.063 with a small standard error of 0.015 
for an interaction term between the day of exposure and 
chronic clothianidin treatment, indicating that the effect 
of chronic clothianidin exposure on per day food intake 
decreased by 0.063  mL for each consecutive measure-
ment compared to the control (p < 10 − 5). We observed a 
similar trend applying a linear model with the same vari-
ables to food intake data from microcolonies exposed to 
acute doses of clothianidin (coefficient = − 0.51, SE = 0.11 
p < 10 − 5). In this model, we only used measurements 
from days 12 (last day before exposure) and 14 (sampling 
day post exposure). We did not detect significant dif-
ferences in the food intake between the control micro-
colonies and microcolonies exposed to sulfoxaflor and 
acetamiprid at either acute or chronic treatments.

The bees exposed to clothianidin consumed less com-
pound compared to sulfoxaflor and acetamiprid. How-
ever, even at a lower total dose this compound caused 
the most changes. Most importantly, the accumulative 

dose consumed under acute and chronic exposures were 
comparable for all compounds. It is important to note 
that some of the changes detected in the differential gene 
expression analysis between control samples and bees 
exposed to chronic clothianidin may have been caused by 
lower food intake rather than exposure alone. Unfortu-
nately, we were unable to differentiate between these two 
factors. Nonetheless, the observed lower food intake was 
a direct result of the exposure to clothianidin.

Quantification of differences between source colonies
To detect differentially expressed genes between the 
source colonies, we used the same DESeq2 model that 
was used for the detection of differentially expressed 
genes between treatments, which included treatment and 
source colonies as explanatory variables. We report genes 
as differentially expressed using a significance cut-off of 
FDR < 0.05 (Additional File 1: Fig. S2). After mapping 
reads obtained from all microcolonies to the reference 
genome using STAR, we mapped variants using free-
Bayes v1.3.1 [23] and applied principal component analy-
sis using SNPRelate v3.18 [81] to see whether there are 
differences in the genetic makeup between the source 
colonies. All colonies were separated by the first two 
principal components showing that the source colonies 
varied in their genetic background (Additional File 1: Fig. 
S3).

Variable responses in bees exposed to acute pesticide 
treatments
We observed that the variance in gene expression 
between replicates in acute treatments is higher than in 
chronic and control treatments. To check if this pattern 
is statistically significant, we built a generalized mixed-
effects model using lme4 R library. We used the standard 
deviation of genes as a response variable and treatment 
(acute or chronic) and differential expression status (dif-
ferentially expressed or unchanged) of each gene as fixed 
explanatory variables; we assigned the gene as a random 
effect to account for a non-independence of the observa-
tions. To address issues related to heteroscedasticity and 
non-normality, we applied variance stabilizing transfor-
mation (VST) before calculating the standard deviation 
of gene expression. The use of VST helped to mitigate 
the presence of extreme values that were observed when 
standard deviation was calculated on un-normalized 
counts, which resulted in a skewed distribution of the 
residuals, and hindered our ability to fit a generalized 
linear model. Standard deviation of gene expression val-
ues after VST is more consistent across genes, as VST 
reduces the dependence of variance on the mean expres-
sion level. Therefore, if we still see differences in standard 
deviation between acute and chronic groups calculated 
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using VST-normalized counts, the differences in stand-
ard deviation between genes in non-normalized counts 
should be greater. To ensure the best model fit for con-
tinuous data with a right-skewed distribution, we applied 
gamma distribution.

The model’s output showed that the interaction term 
between treatment and the expression status variables 
has a significant effect on the response variable, with 
a coefficient of 0.19, t-value of − 13.91, and p of <  10−16, 
suggesting standard deviation is higher for the acute 
group than for the chronic group when genes are dif-
ferentially expressed. In the context of GLMM with a 
gamma distribution, the coefficient is on the log scale. 
Therefore, the standard deviation in the acute treatment 
group is approximately 20% higher on average compared 
to the chronic group.

Differences in the scale of treatment effects
To assess whether differentially expressed genes under 
acute exposure are more likely to exhibit substantial 
changes in expression levels compared to those under 
chronic exposure, we calculated the proportion of genes 
showing at least a fourfold change in expression relative 
to the control. A chi-square test was utilized to deter-
mine whether this proportion was significantly higher 
in the acute treatment group. The findings indicated 
that 3.61% of differentially expressed genes under acute 
clothianidin treatment experienced at least a fourfold 
expression change, in contrast to only 0.75% of differen-
tially expressed genes under chronic treatment (χ2 = 16.7, 
p < 0.00001). Moreover, the most extreme expression 
change under acute exposure to clothianidin was a 
1487-fold increase, which is substantially larger than 
the 31-fold decrease seen with chronic exposure. Thus, 
we selected 20 genes with the most extreme changes 
under acute and chronic clothianidin treatments and ran 
the Welch two-sample t-test to compare the log2Fold 
changes between the gene sets. On average, the top 20 
affected genes had an increase of expression 2.65 times 
higher under acute clothianidin exposure compared to 
the chronic exposure (t = 6.2, df = 26.4, p <  10−6).

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915‑ 025‑ 02169‑z.

Additional file 1: Fig. S1. The power to detect differentially expressed 
genes depends on the agreement between the biological replicates 
within treatment groups and the similarities in the genetic background of 
individuals between groups. We controlled for the genetic background of 
the bumble bees by applying a microcolony‑based experimental design, 
where replicates in all treatments came from the same ten source colonies 
and were, therefore, genetically related. To show this effect, we randomly 
selected control samples from five source colonies and clothianidin 

samples from the remaining five source colonies, so the bees in both 
treatments were not related. We iterated this process over 100 different 
selection combinations and built a distribution of the number of differen‑
tially expressed genes detected (blue distribution). Next, we repeated this 
process, but we randomly selected control and clothianidin samples from 
the same five source colonies, so the bees in both treatments were related 
(yellow distribution). We compared both distributions and tested whether 
it is more likely to obtain a higher number of differentially expressed 
genes when controlling for the source colony effect. When controlling for 
the colony effect, the median number of differentially expressed genes 
was 543 compared to 225 when the colony was not accounted for. The 
distribution when the colony was accounted for was also less positively 
skewed (skewness = 1.99) than when the colony was not accounted 
for (skewness = 0.53). We applied the Kolmogorov‑Smirnov test to 
compare the distributions. We detected high numbers of differentially 
expressed genes using both strategies. However, we conclude that the 
two distributions are statistically significantly different (D = 0.21, p‑value = 
0.02). Therefore, more differentially expressed genes are detected by the 
DESeq2 algorithms when we control for the genetic background of the 
bees. Fig. S2. Heatmap of the number of differentially expressed genes 
(FDR < 0.05) detected between workers from the ten source colonies used 
to establish the microcolonies. We observed many differentially expressed 
genes between the 10 source colonies, with colonies two and three 
being particularly dissimilar. On average, we detected 445 differentially 
expressed genes between other colonies and colonies 2 or 3, compared 
to average 97 differentially expressed genes between other colony pairs. 
Importantly, microcolonies established using worker bees from each 
source colony were equally distributed among the treatments used. All 
colonies were purchased from a commercial breeder and were healthy. 
During the experiment all bees were kept under controlled conditions. 
Therefore, we expected the variation in gene expression to be driven 
by baseline‑biological differences between the source colonies. We 
decided not to exclude colonies two and three from the analysis since 
the potential impact of these colonies on our results was mitigated by 
the presence of representative individuals from these source colonies in 
each treatment group. Fig. S3. Principal component analysis of the SNPs 
detected between the 10 source colonies. Each data point indicates 
a pool of three workers from all microcolonies assembled using the 
corresponding source colony. All microcolonies used in the differential 
gene expression analysis were used here. All source colonies were clearly 
separated indicating underlying genomic differences that were controlled 
for by including the source colony in the DESeq2 model design. Fig. S4. 
Experimental design. We obtained microcolonies from 10 source colonies 
and assigned to one of the seven treatments. All source colonies were 
two weeks old when we started arranging the microcolonies. We created 
microcolonies using callow workers. Workers within each microcolony 
emerged within 24h. Because of the differences in the pace of worker 
production, we created microcolonies in a staggered manner. The order in 
which we assigned treatments to the microcolonies was randomized. Our 
design ensured that treatments were assigned to microcolonies created 
at various stages of source colony development. Table S1. Differentially 
expressed cytochromes P450 under acute treatments and chronic 
clothianidin treatment. The direction of the arrows indicates up‑ or down‑
regulation of the differentially expressed genes. Table S2. Summary of all 
samples used in differential gene expression analysis.

Additional file 2: Table S3. Differentially expressed genes detected under 
the acute and chronic exposure treatments.
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