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Abstract 

The discovery of diverse molecular mechanisms of regulated cell death has opened new avenues for cancer therapy. 
Ferroptosis, a unique form of cell death driven by iron-catalyzed peroxidation of membrane phospholipids, holds 
particular promise for targeting resistant cancer types. This review critically examines current literature on ferroptosis, 
focusing on its defining features and therapeutic potential. We discuss how molecular profiling of tumors and liquid 
biopsies can generate extensive multi-omics datasets, which can be leveraged through machine learning-based ana-
lytical approaches for patient stratification. Addressing these challenges is essential for advancing the clinical integra-
tion of ferroptosis-driven treatments in cancer care.
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Molecular mechanisms of cell death shape 
anti‑cancer strategies
Maintaining the balance between cell survival and death 
is essential for tissue homeostasis and plays a crucial 
role in preventing diseases, particularly cancer. The 1964 
report identifying cell death as a programmed event, 
followed by the formal conceptualization of apoptosis 
in 1972, revolutionized our understanding of cellular 
death and unlocked new opportunities for development 
of targeted therapies [1, 2]. Today, an important class 
of targeted cancer therapeutics has emerged from our 
understanding of apoptosis, including Bcl-2 inhibi-
tors such as Venetoclax [3, 4]. While inducing apoptosis 

remains a cornerstone of cancer therapy, resistance 
mechanisms and deregulation of its machinery have 
driven scientists to explore alternative regulated cell 
death pathways such as necroptosis, pyroptosis, and fer-
roptosis [5, 6].

Necroptosis is an inflammatory form of regulated 
necrosis mediated by the RIPK1-RIPK3-MLKL axis, 
typically activated when apoptosis is impaired [7, 8]. 
Pyroptosis is a gasdermin (GSDM)-dependent, inflam-
masome-activated process with context-dependent roles 
on tumor progression and immunity [9–11]. Ferroptosis 
is an iron-dependent, oxidative stress-driven cell death 
mechanism characterized by the peroxidation of polyun-
saturated fatty acids (PUFAs) in cellular membranes. It 
differs from necroptosis and pyroptosis in its reliance on 
this radical chain reaction rather than on protein com-
plex formation and subsequent signaling events mediated 
by, for example, caspases or kinases [12–14]. Under-
standing and harnessing these pathways to restore cell 
death function has emerged as a promising strategy in 
cancer treatment.

Currently, SMAC (Second Mitochondria-derived 
Activator of Caspases)-mimetics, such as birinapant 
and LCL161 [15, 16], are under clinical investigation for 
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their ability to induce necroptosis in tumor cells, thereby 
bypassing apoptosis resistance [17–19]. Pyroptosis 
presents a dual role in cancer therapy: while immune-
stimulating pyroptosis within tumors can be beneficial, 
chemotherapy-induced pyroptosis in GSDME-express-
ing normal tissues may result in inflammation and tis-
sue damage [20, 21]. To mitigate these adverse effects, 
the concurrent use of anti-inflammatory agents, such 
as the NLRP3 inflammasome inhibitor RRx-001 [22, 
23], is being evaluated in clinical trials for its potential 
to limit inflammatory damage and enhance chemora-
dioprotection [24]. In recent years, growing evidence has 
demonstrated the potential of ferroptosis in effectively 
eradicating both residual and therapy-resistant cancer 
cells [25–28]. In this review, we will focus on ferropto-
sis, particularly within the context of precision oncology, 
exploring its potential as a targeted therapeutic approach.

The rise of ferroptosis in cancer research
Ferroptosis, first conceptualized in 2012, describes a 
distinctive form of regulated necrotic cell death driven 
by iron-dependent lipid peroxidation [12, 29]. However, 
evidence of this cell death existed well before its formal 
recognition, notably in studies of oxytosis and glutamate-
induced toxicity, which were linked to neuronal cell death 
in various neurological disorders [30–36]. These earlier 
observations provided crucial insights into the biology 
of ferroptosis and its application in neuroprotection and 
organ injury research.

Over the past few years, research on ferroptosis has 
experienced a remarkable surge, particularly in the con-
text of cancer. Publication trends from 2012 to 2022 
highlight a striking growth in studies on regulated necro-
sis, with ferroptosis showing the most rapid increase 
(Fig. 1 and SI part 1—Table S1). The number of ferropto-
sis-related publications has been doubling approximately 
every 10  months, with a similar trend in oncology, sur-
passing necroptosis and pyroptosis in cancer research 
since 2020–2021 (Fig. 1) and likely to continue outpacing 
the number of studies on pyroptosis across fields beyond 
oncology. This positions ferroptosis as a pivotal focus 
within the broader cell death landscape. The rapid expan-
sion not only highlights its rising prominence but also 
reflects the evolving priorities of biomedical research at 
the intersection of cell death and disease.

Ferroptosis at the crossroads: intersecting 
pathways and emerging applications
A co-occurrence analysis of author keywords related 
to ferroptosis research (Fig.  2 and SI part 2—Table  S3) 
reveals a dynamic and interconnected network of 
research fields. This analysis underscores the growing 
interest in studying ferroptosis alongside other regulated 

cell death pathways, fostering a more integrative under-
standing of cellular demise. Such convergence highlights 
how these pathways may interact or overlap within simi-
lar pathological contexts.

Main research areas and disease associations emerge 
within this network, with cancer standing out. Strong 
links to specific cancer types, such as hepatocellular 
carcinoma, breast, colorectal, and gastric cancers, illus-
trate the expanding scope of ferroptosis within oncology. 
Notably, half of ferroptosis-related publications focus on 
cancer (SI part 1—Table S1), underscoring its pivotal role 
in this field. How ferroptosis influences tumor immu-
nity is also an emerging field [39–41], but it is outside 
the scope of this review (Fig. 2 and SI Part 2—Table S3). 
Beyond cancer, ferroptosis is also linked to neurodegen-
erative disorders, including Alzheimer’s and Parkinson’s 
diseases, as well as to ischemia–reperfusion injuries, 
such as acute kidney and lung injuries. These associations 
highlight the relevance of ferroptosis in both acute and 
chronic conditions, suggesting diverse potential thera-
peutic applications.

Ferroptosis is highly conserved across species, from 
unicellular organisms to mammals, suggesting an 
ancient role in cellular defense and metabolic regula-
tion [42]. Its broad pathological involvement may stem 
from the evolutionary pressure of atmospheric oxygen, 
which may have driven the emergence of ferroptosis as 
a lethal process and, consequently, the evolution of cel-
lular mechanisms to counteract it for survival. Unlike 
apoptosis, necroptosis, or pyroptosis, ferroptosis is gov-
erned by fundamental biochemical processes regulating 
lipid peroxidation, rather than receptor-mediated signal-
ing cascades [43, 44]. This core metabolic regulation also 
likely explains its persistence across diverse pathophysi-
ological contexts. Evolutionarily, ferroptosis may act as a 
tumor-suppressive mechanism by eliminating cells with 
high metabolic activity, while in neurons, their high-iron 
demand, PUFA-rich membranes, and reliance on oxida-
tive metabolism make them particularly vulnerable to 
ferroptosis, leading to neurodegeneration [45, 46].

Moreover, ferroptosis research intersects with inno-
vative technologies such as machine learning (ML) and 
nanotargeting strategies (Fig. 2 and SI part 2—Table S3). 
ML enables more accurate modeling of biological pro-
cesses, enhances drug response predictions, and opti-
mizes precise treatment planning [47–49]. Meanwhile, 
nanoparticle-based delivery systems offer efficient deliv-
ery of ferroptosis-inducing agents to tumors, reducing 
systemic toxicity and improving therapeutic outcomes 
[50–52]. These advancements bring ferroptosis-based 
therapies closer to clinical application, showcasing the 
field’s rapid evolution and translational potential.
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Targeting ferroptosis in cancer therapy: challenges 
and complexities
Ferroptosis is characterized by iron-catalyzed peroxi-
dation of PUFAs in cellular membranes, leading to cell 
death [12, 14]. This process is tightly regulated by iron, 
redox, and lipid metabolism, all of which play critical 
roles in determining cellular sensitivity to this form of 

cell death (Fig. 3) [12, 45, 53, 54]. Iron catalyzes the oxi-
dation of PUFAs within cell membranes, generating toxic 
lipid peroxides that lead to lethal membrane permeabili-
zation. GPX4, which primarily reduces lipid hydroperox-
ides to lipid alcohols, is crucial in detoxifying toxic lipids 
and preventing ferroptosis, using glutathione (GSH) as a 
cofactor [55]. Redox metabolites, such as vitamin E [56, 

Fig. 1  Overview of publication trends from 2012 to 2022 related to specific established cell death mechanisms. a Total number of publications. b 
Publications focused exclusively on cancer research. In both cases, the data on ferroptosis were fitted to an exponential growth curve (curve in red: 
y = y0e

kt, where t is the time, y is the number of publication at time t, y0 is the initial quantity in the first year considered, e is the base of the natural 
logarithm, and k is the growth rate constant). R2 is the coefficient of determination and Td, or doubling time, is a metric that quantifies the time 
(expressed here in years) it takes for the number of published articles on ferroptosis to double. A search for publications on these cell death 
subroutines was conducted in October 2024 using the Science Citation Index Expanded (SCI-EXPANDED) database of the Web of Science Core 
Collection (WoSCC). The retrieval formulas, adapted and expanded from Wu et al. (2023) [37], are provided in SI part 1—Advanced search formulas
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Fig. 2  A ferroptosis-based VOSviewer-generated map. Visualization is based on bibliographic data from all publications related to ferroptosis, 
retrieved from the Web of Science using the Science Citation Index Expanded (SCI-EXPANDED) database [38]. The map presents a co-occurrence 
analysis using fractional counting as the counting method, based on author keywords. To improve the visibility of co-occurrence patterns, some 
obvious ferroptosis-related keywords like “ferroptosis,” “lipid peroxidation,” “cell death,” and “GPX4” were excluded from the map. A complete table 
containing all keywords is available in SI part 2—Table S3
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57], ubiquinol (CoQ10H2) [58, 59], vitamin KH2 [60], 
vitamin A [61, 62], hydropersulfides [63], 7-dehydrocho-
lesterol [64], and tetrahydrobiopterin (BH4) [65], play a 
crucial role in preventing ferroptosis by acting as endog-
enous radical scavengers.

Correspondingly, enzymes that are involved in recy-
cling these radical scavengers effectively inhibit lipid 
peroxidation and ferroptosis. Among these, the FSP1/
CoQ10 system functions by preventing lipid peroxida-
tion in extramitochondrial membranes [58, 59], while 
DHODH acts within mitochondria, reducing the anti-
oxidant CoQ10 in a manner akin to FSP1 [66]. GCH1/
BH4 not only generates the antioxidant BH4, which func-
tions similarly to CoQ10, but also remodels the lipid 
membrane environment, enhancing reduced CoQ10 and 
reducing PUFA-containing phospholipids (PUFA-PLs) 
[65, 67]. Cells with higher expression of these systems 
are more resistant to ferroptosis, while lower expression 
makes them more susceptible.

PUFA-PLs have emerged as critical determinants of 
cellular susceptibility to ferroptosis, as their oxidation 
drives the lipid peroxidation process essential for this 
form of cell death [54]. Recently, phospholipids with two 
polyunsaturated fatty acyl tails (diacyl-PUFA phosphati-
dylcholines: PC-PUFA₂s) were characterized and found 
to play a crucial role in regulating mitochondrial homeo-
stasis and ferroptosis [68]. In contrast, non-oxidizable 

lipids such as monounsaturated fatty acids (MUFAs) 
confer resistance to ferroptosis, highlighting the impor-
tance of lipid composition and metabolism in regulating 
ferroptotic sensitivity [69]. Recent research has redefined 
ferroptosis not simply as a lipid peroxidation-driven cell 
death subroutine but as a failure in lipid quality control 
mechanisms [70].

On the other hand, the main challenge in studying 
ferroptosis, compared to other cell death pathways like 
apoptosis or necroptosis, lies in its highly dynamic and 
context-dependent nature. Unlike more defined path-
ways, ferroptosis does not follow a singular, linear cas-
cade of molecular events. Instead, it is influenced by a 
complex interplay of iron metabolism, lipid peroxida-
tion, and redox homeostasis, which can vary significantly 
depending on the cell type, tissue environment, and 
disease context. Therefore, a variety of metabolites and 
proteins can initiate or regulate ferroptosis, without any 
single component being necessary or universally required 
[43].

Furthermore, cell sensitivity to ferroptosis can vary 
significantly depending also on the specific induction 
mechanism [44]. For instance, recently, a chemical-
genetic screen across different cell lines and pro-ferrop-
totic conditions was conducted to identify conserved 
regulators of ferroptosis [43, 71]. Surprisingly, only a few 
genes emerged as essential for ferroptosis across these 

Fig. 3  Snapshot of ferroptosis execution and its major defense mechanisms.  
Ferroptosis is executed by excessive peroxidation of PUFA-containing PLs within cellular membranes. This free radical chain reaction is catalyzed 
by O2 and Fe2+. Two major defense mechanisms suppress the process of PL peroxidation: (1) direct conversion of reactive PL-OOH to unreactive 
PL-OH by GPX4, and (2) dampening by an arsenal of lipophilic radical traps, such as vitamin E, A or KH2, BH4, 7-DHC, and CoQ10H2. BH4, 
tetrahydrobiopterin; CoQ10H₂, reduced form of coenzyme Q10; DHODH, dihydroorotate dehydrogenase; FSP1, ferroptosis suppressor protein 1; 
GCH1, GTP cyclohydrolase 1; GPX4, glutathione peroxidase 4; GSH, glutathione (reduced form); GSSG, glutathione disulfide (oxidized form)
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diverse contexts. The dynamism and context dependency 
in ferroptosis can be exemplified by the roles of ACSL4, 
LPCAT3, NRF2, and HMOX1. ACSL4, an enzyme key to 
PUFA metabolism and previously considered universally 
necessary for ferroptosis, was shown to be crucial only 
under specific conditions, particularly when ferropto-
sis is triggered by direct GPX4 inhibition rather than by 
cystine deprivation [43, 71]. LPCAT3 has a dual role in 
metabolizing both MUFAs and PUFAs [70, 72]; NADPH 
functions as a cofactor for both ferroptosis-inhibiting 
enzymes (e.g., FSP1) and ferroptosis-promoting enzymes 
(such as NOX and POR) [12, 44, 73]; and HMOX1, while 
part of the anti-ferroptotic Nrf2/FTH1/HMOX1 axis, can 
also trigger ferroptosis through increase in cellular labile 
iron when overactivated [50, 74].

Despite its promise as a therapeutic mechanism to 
target tumors resistant to conventional treatments, 
including apoptosis-based therapies [12, 13, 25, 50, 75], 
ferroptosis resistance has emerged as a critical bottle-
neck. Cancer cells often exhibit metabolic dependencies, 
such as iron, cysteine, and glutamine addiction, which 
coupled with the vulnerability of GSH depletion, high-
light their intrinsic susceptibility to ferroptotic cell death 
[13, 26, 76–78]. However, experimental studies have 
revealed various resistance mechanisms that undermine 
this vulnerability, reducing the therapeutic efficacy of 
ferroptosis-inducing strategies. The lowered PUFA lev-
els, reduced iron availability, and upregulated antioxidant 
pathways are the key ferroptosis-resistant mechanisms in 
cancer cells [79–84].

Therefore, in addition to strategies aimed at sensitiz-
ing cancer cells to ferroptosis, stratifying patients based 
on their susceptibility to ferroptosis seems crucial. In 
this regard, ML techniques hold promise in identifying 
specific biomarkers and developing prognostic and diag-
nostic models, as well as predictive models to estimate 
treatment responsiveness. Although still theoretical, 
these methods could enable patient stratification based 
on ferroptosis sensitivity, paving the way for therapeutic 
strategies more aligned with the principles of precision 
medicine.

Application of data‑driven omics approaches 
and ML‑based analytical methods in ferroptosis
The integration of datasets and ML techniques in cell 
death research has significantly enhanced the potential 
clinical impact of studies in this field. Datasets such as 
the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) encompass a variety of samples, 
including human tissues and cell lines, offering a wealth 
of information that can be mined using machine learn-
ing algorithms to uncover new insights into ferroptosis 
[85, 86]. By interrogating these datasets, researchers can 

identify patterns, predict outcomes, and discover novel 
biomarkers or therapeutic targets with a level of accu-
racy and efficiency beyond what traditional methods can 
achieve.

ML workflow and its application in cell death research
ML encompasses a set of computational techniques that 
enable computers to learn from data without explicit pro-
gramming. The typical machine learning process starts 
with data collection from the aforementioned datasets 
(e.g., GEO, TCGA). The collected data is then split into 
training and testing sets, where the training set is used 
to build the model, and the testing set is used to evaluate 
its performance. Feature selection or extraction is often 
performed to reduce the complexity of the data, focusing 
on the most relevant variables. Once trained, the model 
is validated on the testing set, enabling it to make predic-
tions on new and unseen data, such as forecasting the 
likelihood of ferroptosis occurring in different biological 
contexts (SI part 1—Table S2).

The use of computational models in cell death research 
dates back to the 1990s, primarily focusing on apop-
tosis detection. These early studies used artificial neu-
ral networks (ANNs) to analyze apoptotic markers for 
prognostic purposes. For instance, in prostate cancer, 
combining clinical and apoptotic markers like Bcl-2 and 
p53 improved prediction accuracy [87]. ANNs were also 
employed to distinguish between apoptosis and necrosis 
in cell cultures by analyzing DNA staining and biochemi-
cal markers like LDH release [88].

Since 2020, the application of ML in cell death research 
has expanded to include non-apoptotic mechanisms such 
as ferroptosis. Similar to the approach in the 1990s, cur-
rent machine learning algorithms in ferroptosis research 
are used to generate diagnostic, prognostic, and predic-
tive (response to treatment) models in disease [47, 89–
92]; distinguishing ferroptosis from other mechanisms 
of cell death [93–95]; and exploring its role in diverse 
pathologies [96–98]. Cancer research has garnered sig-
nificant attention in this regard.

Advances in ML‑driven ferroptosis research in cancer
Studies applying ML techniques to investigate ferropto-
sis-related biomarkers across various cancer types are 
concisely summarized (SI part 1—Table S2). Breast, blad-
der, lung, and colorectal cancers, as well as hepatocellu-
lar carcinoma, are among the most extensively studied, 
highlighting both the availability of public datasets and 
the clinical significance of these cancer types. Notably, 
SLC7A11, a subunit of system Xc⁻ involved in cystine 
uptake and GSH synthesis [12], has been identified as 
a recurrent biomarker in multiple cancer types (AML, 
ACC, BLCA, BRCA, HCC, ccRCC, and PRAD). Similarly, 
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NCOA4, a ferroptosis driver involved in ferritinophagy 
[99], has been found in AML, glioma, LUAD, PRAD, and 
ccRCC, while ACSF2, another ferroptosis driver linked to 
lipid metabolism [100], has been noted in BRCA, CRC, 
and AML. These biomarkers are crucial in regulating 
oxidative stress, iron homeostasis, and lipid peroxida-
tion in ferroptosis. Their prevalence across various can-
cers underscores their potential as therapeutic targets, 
with implications for selectively inducing ferroptotic cell 
death.

These studies indicate an increasing trend to exam-
ine diverse cell death mechanisms simultaneously as 
indicators of cancer prognosis and drug sensitivity 
[47, 101–107]. A Cell Death Index (CDI) is often cre-
ated to estimate the activity of various regulated cell 
death (RCD) pathways. Tumors with disrupted cell 
death processes are generally more aggressive, resist-
ant to treatment, and linked to poorer patient outcomes. 
This reflects a shift from focusing on a single cell death 
mechanism to acknowledging the complex interplay of 
multiple processes. For instance, a study on triple-nega-
tive breast cancer (TNBC) developed a CDI by analyzing 
twelve RCD patterns to predict TNBC progression and 
drug sensitivity [47]. Among the 87 ferroptosis-related 
genes (FRGs) included, three ferroptosis suppressor 
genes (MT1G, PRKAA2, and CDKN1A) were part of the 
12-gene signature constructed using LASSO Cox regres-
sion. Notably, only one gene was classified as a FRG at the 
time of publication. The CDI correlated with worse post-
operative prognosis and resistance to standard chemo-
therapy, while indicating potential sensitivity to targeted 
therapies like palbociclib.

In line with these developments, recent research has 
also explored the interplay of ferroptosis with newly 
reported cell death subroutines, such as disulfidptosis 
and cuproptosis [103, 105, 108, 109]. Disulfidptosis is 
triggered by the accumulation of disulfide bonds, leading 
to cytoskeletal collapse [110], while cuproptosis involves 
cell death initiated by copper-induced mitochondrial 
protein aggregation [111, 112]. Both mechanisms share 
regulatory links with ferroptosis, particularly through 
their involvement in oxidative stress and metabolic dys-
function. In breast cancer, a model integrating these 
pathways has revealed their significant impacts on chem-
otherapy sensitivity, immune checkpoint expression, and 
overall prognosis in patients, with SLC7A11 playing a 
central role in modulating the tumor microenvironment 
and influencing therapeutic responses [105]. These find-
ings underscore that our understanding of tumor biology 
remains incomplete without the incorporation of newly 
discovered cell death mechanisms and that the integra-
tion of such discoveries through machine learning could 
significantly enhance cancer therapy.

Challenges and future directions in ML‑applied ferroptosis 
research
The application of the ML techniques (SI part 1—
Table  S2) has proven particularly effective for feature 
selection and improving predictive accuracy, helping 
identify therapeutic targets related to ferroptosis. How-
ever, most studies have focused primarily on prognostic 
modeling and drug sensitivity prediction, with limited 
attention to diagnostic applications. This focus on prog-
nosis (Fig. 2) is partly driven by the retrospective nature 
of patient datasets, which can introduce bias and limit 
early-stage diagnostic research, as the data are often 
more suitable for outcome prediction rather than detect-
ing disease at its onset.

An additional trend in ferroptosis-related prognos-
tic model development is the predominant reliance on 
gene expression data (RNA sequencing), with relatively 
few models incorporating other omics data, such as 
epigenetic or proteomic data. Although gene expres-
sion data are widely used, there is growing recognition 
of the importance of integrating epigenomic data, par-
ticularly given the role of DNA methylation in regulat-
ing ferroptosis. For instance, DNA hypomethylation has 
been associated with GPX4 upregulation across various 
cancers, acting as a common mechanism linked to chem-
oresistance and poor prognosis [113]. In neuroblastoma, 
CBS DNA methylation status correlates with disease 
risk: hypermethylation predisposes to ferroptosis in low-
risk cases, whereas hypomethylation upregulates CBS, 
activating the transsulfuration pathway and preventing 
ferroptosis in high-risk disease [26]. Incorporating epi-
genetic data could improve model accuracy by providing 
a more comprehensive view of cancer biology. Moreover, 
many studies developing these models rely on the FerrDB 
database, a curated resource of ferroptosis regulators and 
disease associations [114, 115]. While FerrDB is valu-
able, it primarily focuses on gene expression and may lag 
behind the most recent research. This underscores the 
need for consulting up-to-date literature to ensure all rel-
evant findings are incorporated.

The application of ML techniques to ferroptosis in can-
cer remains in its early stages. As the field progresses, the 
development of more specialized algorithms, the integra-
tion of diverse omics datasets, and a stronger emphasis 
on validation and reproducibility are expected to enhance 
the visibility and impact of this research. This anticipated 
growth trajectory is rooted in the promising potential of 
ML to drive innovation across biomedical sciences and 
clinical research.

Finally, the focus on identifying ferroptosis-related 
signatures and prognostic biomarkers correlating with 
ferroptosis sensitivity or resistance from large-scale data-
sets reflects an increasing effort to integrate ferroptosis 
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research into the framework of precision oncology, as 
highlighted in several publications [48, 49, 102–104, 106, 
116]. However, true precision oncology requires thera-
pies tailored to a patient’s current genetic and molecular 
tumor profile, typically derived from real-time biopsies 
and sequencing data [117]. In contrast, the aforemen-
tioned studies (SI part 1—Table S2) rely on pre-existing 
datasets rather than real-time, patient-specific data. 
While these studies represent an important foundational 
step toward incorporating ferroptosis into precision 
oncology, the next critical advancement will be transi-
tioning from dataset analysis to real-time clinical appli-
cations, enabling ferroptosis research to fully influence 
individualized cancer treatment.

Ferroptosis in the era of precision oncology
Precision oncology offers a transformative approach to 
cancer treatment by tailoring therapies to the unique 
genetic and molecular profiles of individual tumors. By 
harnessing advanced molecular profiling technologies, 
precision oncology identifies specific mutations and bio-
markers within a patient’s tumor, enabling the selection 
of targeted therapies that directly address the underlying 
drivers of the disease [117–119]. This approach contrasts 
with traditional cancer treatments, which typically rely 
on classifying cancers by their tissue of origin (e.g., lung, 
breast, or colon cancer) and applying standard therapies, 
such as surgery, chemotherapy, and radiation. These con-
ventional methods are based on average outcomes from 
large populations rather than individual patient char-
acteristics. However, cancer is a highly heterogeneous 
disease, with tumors within the same tissue type often 
displaying vastly different genetic and molecular pro-
files [120]. This diversity means that a treatment effec-
tive for one patient may be ineffective or even harmful to 
another.

Emerging applications of liquid biopsy in ferroptosis 
research
Effective implementation of precision oncology requires a 
tumor sample for detailed molecular analysis. Tradition-
ally, this has been done through a tissue biopsy, involv-
ing the surgical removal of a portion of the tumor. While 
tissue biopsies provide direct access to tumor cells, they 
come with several drawbacks. The procedure is invasive, 
often requiring anesthesia, and carries risks of complica-
tions. Additionally, tissue biopsies may not capture the 
full genetic diversity of a tumor because they only sample 
a specific portion, potentially missing key mutations or 
other molecular patterns present in different areas of the 
tumor [121, 122].

In contrast, liquid biopsies (LB) offer a less inva-
sive and more comprehensive alternative. Significant 
advancements in liquid biopsy have led to FDA approv-
als of both single-gene and multigene assays for detect-
ing alterations in cell-free DNA (cfDNA) in plasma. 
This represents a pivotal shift toward integrating LB as 
a companion diagnostic tool in targeted cancer thera-
pies, particularly for patients with advanced-stage can-
cers [123, 124]. LB allows the analysis of circulating 
cfDNA, DNA fragments released into the bloodstream, 
or other bodily fluids, primarily through processes like 
apoptosis and necrosis, by both normal and diseased 
cells. A subset of cfDNA, known as circulating tumor 
DNA (ctDNA), is specifically derived from tumor cells. 
These fragments are shed into the blood, and their 
analysis provides a real-time snapshot of the tumor’s 
(epi)genetic landscape across different regions and even 
from metastatic sites. This approach provides a more 
holistic view of the tumor’s (epi)genetic diversity than 
what a tissue biopsy might capture. Analyzing ctDNA 
also enables continuous monitoring of the tumor’s 
evolution over time, which is crucial for oncologists 
to detect changes during treatment that lead to drug 
resistance, assess tumor burden, and monitor residual 
disease after therapy [121, 125, 126]. By offering ongo-
ing, comprehensive molecular information, LB facili-
tate more adaptive cancer treatment strategies, aligning 
closely with the goals of precision oncology.

A thorough literature search on ferroptosis and liquid 
biopsy yields limited results, with most studies show-
ing co-occurrence of the terms without direct connec-
tions. However, expanding the search to ferroptosis 
and extracellular vesicles (EVs) isolated from serum or 
plasma reveals a growing area of research. These works 
explore how EVs, carrying molecular signatures from 
cancer cells or cells undergoing ferroptosis, can serve 
as biomarkers for disease. For example, exosomes iso-
lated from human plasma containing different non-
coding RNA molecules (miR-522, miR-4443, and 
circRNA_101093) have been found to drive ferroptosis 
resistance in patients with gastric cancer, non-small cell 
lung carcinoma, and lung adenocarcinoma [127–129]. 
This EV-based research aligns with the conceptual 
framework of liquid biopsy, offering a non-invasive 
means to monitor cell death-associated processes 
linked to therapy response. Interestingly, despite the 
clear overlap, researchers working on ferroptosis and 
EVs rarely refer to their studies as "liquid biopsy." This 
omission may reflect the nascent stage of this interdis-
ciplinary field, highlighting a valuable connection that 
could enhance non-invasive cancer diagnostics and fer-
roptosis therapy monitoring.
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A vision for ferroptosis integration into precision oncology 
practice
LB focused initially on identifying genetic markers in 
cfDNA, such as sex differences (prenatal testing), poly-
morphisms, and mutations [130]. However, by exploring 
non-genetic aspects like DNA methylation, fragmen-
tation, and topology, the understanding of cfDNA has 
broadened, significantly enhancing the scope and appli-
cations of LB [122, 130, 131]. CpG methylation has been 
observed not only in gene promoters and transcription 
start sites but also in diverse genomic regions [132, 133]. 
This broader distribution underscores the potential of the 
epigenome as a valuable source of methylation biomark-
ers for different diseases.

A distinct advantage of DNA methylation patterns lies 
in their involvement in the early stages of cancer devel-
opment. In many cancers, hypermethylation of tumor 
suppressor genes is an early event, often resulting in gene 
silencing. These changes in DNA methylation patterns 
can be among the first detectable signs of tumorigenesis, 

offering a crucial early marker for cancer detection [134–
137]. Furthermore, methylation patterns in ctDNA 
closely mirror those of the primary tumor tissue, allow-
ing for more universal and accurate cancer detection and 
even providing insights into the tumor’s origin within the 
body [138–141]. Consequently, various cancer-specific 
methylation patterns in ctDNA have been investigated 
as potential biomarkers, with some gaining regulatory 
approval (CE-IVD and FDA) [142–145].

The clinical utility of ctDNA methylation as a non-
invasive tool for cancer screening could extend to fer-
roptosis-based therapies. As exemplified earlier, specific 
DNA methylation patterns may serve as biomarkers for 
predicting a tumor’s response to ferroptosis inducers. 
By analyzing cell-free DNA for such epigenetic modifi-
cations and employing ML models trained for stratifica-
tion, clinicians can effectively predict and guide patient 
responses to ferroptosis-targeted treatments.

A prospective workflow for ferroptosis-based cancer 
therapy is outlined (Fig. 4), highlighting the integration of 

Fig. 4  A precision oncology scenario outline. A prospective workflow for ferroptosis-based cancer therapy, emphasizing the integration of liquid 
biopsy technology, real-time nanopore sequencing for epigenetic profiling, and machine learning (ML)-driven patient and treatment stratification 
based on ferroptosis responsiveness. Created with BioRender
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liquid biopsy technology, real-time nanopore sequencing 
for epigenetic profiling, and ML-driven patient and treat-
ment stratification based on ferroptosis responsiveness. 
While multiple DNA methylation analysis methods exist, 
Oxford Nanopore Technologies (ONT) stands out as a 
relatively underexplored yet promising portable technol-
ogy. Based on third-generation sequencing, ONT enables 
real-time, long-read analysis of native DNA modifica-
tions without PCR amplification or bisulfite conversion. 
However, despite its potential for accurate epigenetic 
profiling through neural network-based signal inter-
pretation, challenges with base-calling accuracy remain 
[146–150].

Although this discussion centers on DNA methyla-
tion, particularly through ONT sequencing, it is essential 
to recognize the transformative potential of integrating 
multi-omics technologies within the context of liquid 
biopsies. The field of multi-omics is rapidly advancing, 
pushing clinical practice toward a more robust and effi-
cient framework for patient care. By utilizing multiple 
layers of molecular data, clinicians can better tailor treat-
ments, enhance early detection, and improve prognostic 
accuracy, ultimately bringing the vision of ferroptosis-
based precision oncology closer to reality [118, 151–154]. 
Interestingly, some approaches are even combining 
omics data with histopathological features through digi-
tal pathology analysis, enabling the identification of fer-
roptosis vulnerabilities for more effective stratification of 
breast cancer patients [155].

Ferroptosis: prospects for clinical translation
Several companies are actively developing ferroptosis-
based therapeutics, focusing on both inducers for cancer 
treatment and inhibitors for neurodegenerative diseases 
and transplantation. To date, translating ferroptosis mod-
ulation into clinical applications has not been achieved, 
but the future appears promising.

Kojin Therapeutics is developing small-molecule 
inhibitors targeting glutamate-cysteine ligase (GCL), the 
rate-limiting enzyme in glutathione synthesis, to induce 
ferroptosis in solid tumors, with preclinical proof of 
concept established (https://​kojin​tx.​com/). Kuda Thera-
peutics has developed a molecule that inhibits hypoxia-
inducible factor (HIF)−2α and induces ferroptosis in 
clear cell renal cell carcinoma (ccRCC), currently in pre-
clinical development (https://​kudat​herap​eutics.​com/). 
Elucida Oncology developed C’Dots for cancer therapy 
and launched a therapeutic clinical trial in 2021 for FRα-
overexpressing tumors [156]. Notably, while C’Dots have 
been shown to induce ferroptosis [51], Elucida Oncol-
ogy did not explicitly link its clinical applications to 
ferroptosis.

On the other hand, several FDA-approved drugs, ini-
tially developed for cancer and other non-malignant 
conditions, have been identified as ferroptosis inducers 
in cancer cells, including sulfasalazine, artemisinin and 
its derivatives, disulfiram, lanperisone, acetaminophen, 
cisplatin, sorafenib, and altretamine [157, 158]. These 
cases illustrate that while ferroptosis-targeting thera-
pies are not yet standard in clinical practice, existing 
drugs with ferroptotic activity offer significant potential 
for repurposing in optimized oncology treatments. This 
also underscores the importance of considering whether 
approved medications inadvertently induce ferroptosis in 
healthy cells, potentially leading to adverse outcomes.

On the inhibitory front, PTC Therapeutics is develop-
ing Vatiquinone (EPI-743) and Utreloxastat (PTC857), 
small-molecule inhibitors of 15-lipoxygenase (15-LO), 
an enzyme that drives lipid peroxidation and contributes 
to ferroptosis [159, 160]. Both compounds are advancing 
in clinical trials for Friedreich’s ataxia and amyotrophic 
lateral sclerosis, respectively [161, 162]. ROSCUE Thera-
peutics and IRONIX Therapeutics focus on ferroptosis 
suppression using lipophilic radical traps, with potential 
applications in transplantation, multiorgan dysfunction 
syndrome, and neurodegenerative diseases [55, 163].

These initiatives highlight both the expanding scope 
of ferroptosis research and the persistent challenges in 
its clinical translation, including achieving selective tar-
geting to minimize off-target toxicity, identifying reli-
able biomarkers to monitor ferroptotic activity in  vivo, 
and stratifying ferroptosis-sensitive subpopulations for 
tailored treatments. Integrating omics-based patient 
profiling, liquid biopsy technologies, and machine 
learning-driven stratification models will be essential to 
overcome these hurdles and optimize safety and clinical 
outcomes.

We anticipate that, in the short term, several ferropto-
sis modulators currently in preclinical development will 
enter early-phase clinical trials. In the long term, fer-
roptosis-targeting therapies are likely to expand beyond 
cancer and neurodegeneration to conditions such as 
ischemia–reperfusion injuries and inflammatory diseases 
[164–166], including rheumatoid arthritis [167], inflam-
matory bowel disease [168, 169], metabolic dysfunction-
associated steatotic liver disease (MASLD) [170], and 
liver fibrosis [171], driven by advances in biomarker dis-
covery and precision medicine.

Final considerations
The literature review conducted in this article allows us 
to propose an evolutionary framework that highlights 
the progression of studies on ferroptosis, particularly in 
the field of oncology, structured into three fundamental 
stages (Fig. 5). While this framework simplifies the reality 

https://kojintx.com/
https://kudatherapeutics.com/
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of this rapidly expanding field, it offers a clear sense of 
the advancements achieved and where it may be headed. 
Importantly, these stages coexist and reinforce each 
other.

The first stage focused on elucidating the distinctive 
signaling pathways associated with ferroptosis and identi-
fying inducers and inhibitors across various physiological 
and pathological contexts. Researchers initially employed 
various approaches, such as synthetic lethal screens [12, 
172, 173] and, more recently, CRISPR screens [174–176], 
to pinpoint key molecular targets involved in ferropto-
sis. This phase is marked by significant human effort to 
integrate findings, as evidenced by the numerous review 
articles published annually (over 200 per year since 2020, 
exceeding 700 in the past year alone) and the develop-
ment of curated databases such as FerrDB [114, 115], 
which consolidates knowledge about ferroptosis-related 
genes, compounds, and diseases.

Building on this foundational knowledge, the second 
stage integrated ML into ferroptosis research, allowing 
for the development of prognostic tools based on ferrop-
tosis-related gene signatures in various cancer models. 
By establishing reliable ferroptosis signatures in specific 
tumor types, this phase laid the groundwork for a third, 
more refined stage of application.

The third phase, though still emerging, envisions 
the future of ferroptosis-focused cancer therapy. Real-
time tumor analysis through LB and molecular profil-
ing techniques enables a more precise understanding of 
individual patients’ responses to ferroptosis-inducing 

treatments. Notably, several FDA-approved drugs have 
been identified as inducers [177–182], broadening thera-
peutic options. Additionally, high-throughput screenings 
aimed at discovering ferroptosis triggers further expand 
the pool of potential treatments. Combining epigenetic 
profiling with ML-driven approaches could refine patient 
selection, identifying those most likely to benefit from 
ferroptosis therapy and matching them with the most 
effective drugs (Fig. 4).

Another promising approach contributing to this 
third phase of development in ferroptosis research is 
the use of patient-derived xenografts (PDX), where 
patients’ tumors are propagated through serial pas-
sages in mice (other organisms, like zebrafish, have also 
been used). PDX models retain the molecular, genetic, 
and histological heterogeneity of the original human 
tumors, providing a more accurate platform for study-
ing tumor biology, drug responsiveness, predicting bio-
markers of drug response, and therapeutic outcomes 
[183–185]. Since 2020, there has been a noticeable, 
though still modest, increase in the use of PDX models 
in cancer studies related to ferroptosis [186–191]. This 
emerging shift from cell line-derived xenografts (CDX), 
which are models developed from immortalized cancer 
cell lines, suggests a strategic effort to align ferropto-
sis research with platforms that offer greater potential 
for developing therapies grounded in the principles of 
precision oncology. However, several challenges must 
be addressed with PDX models, including the high cost 
and resources required to establish and maintain them, 

Fig. 5  Evolution of research in the field of ferroptosis. Early studies focused on elucidating the pathways that regulate ferroptosis, conceptualizing 
it as a distinct cell death mechanism. This foundational work continued to deepen the understanding of these pathways, consistently 
depicting ferroptosis as governed by well-defined molecular circuits. In parallel, machine learning-assisted investigations emerged, prioritizing 
the development of prognostic models for specific cancer types. Looking ahead, ferroptosis is envisioned as a key component in precision 
oncology, where its modulation will be leveraged for cancer therapies. Created with BioRender
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the risk of stromal and genetic drift, and the use of 
immunocompromised mice, which may not fully cap-
ture human immune responses [183–185].

To illustrate this three-stage evolution, a concep-
tual journey is portrayed (Fig.  5) from traditional cell 
death research to a new paradigm where human exper-
tise merges with machine learning, accelerating both 
discovery and therapeutic innovation. In this context, 
ferroptosis research advances to a new scenario where 
human intellect and machine learning algorithms syn-
ergize to unlock therapeutic possibilities once beyond 
our reach, catalyzing its integration into precision 
medicine.
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