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Abstract 

Background  Human responses and acclimation to the environmental stresses of high altitude and low oxygen are 
multifaceted and regulated by multiple genes. However, the mechanism of how the body adjusts in a low-oxygen 
environment is not yet clear.

Results  Hence, we performed RNA sequencing (RNA-seq) and ATAC sequencing (ATAC-seq) to observe the changes 
of transcriptome and chromatin accessibility in the peripheral blood of eight individuals at 1 h post adaptation 
in a simulated plateau environment with 3500 m and 4500 m altitude, respectively. Differential expression analy-
sis and the Boruta algorithm identified differentially expressed genes (DEGs) and differentially accessible regions 
(DARs) associated with hypoxia adaptation. Specifically, RNA-seq identified 93 and 7 DEGs after 1 h post adaptation 
with 3500 m altitude and 45 and 8 DEGs after 1 h adaptation with 4500 m. Additionally, ATAC-seq screened 12 and 4 
DARs in 3500 m altitude adaption and 15 and 5 DARs in 4500 m altitude adaption. Moreover, the combined analy-
sis of RNA-seq and ATAC-seq revealed that 10 hub genes were independently identified from the protein–protein 
interaction (PPI) network for each altitude. Gene enrichment analysis displayed that most hub genes were related 
with hypoxia pathways.

Conclusions  Our results can provide the reference for the early response of the organism to hypoxic adaptation.
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Background
There are a range of exposure factors at high altitude, 
such as low pressure, low oxygen, cold, and solar radia-
tion, with the oxygen content of the air only about 60% 
of that at sea level at an altitude of 4000 m above sea level 
[1]. Among these factors, hypoxic environmental expo-
sures cause high altitude specific diseases in humans [2]. 
High-altitude hypoxic acclimatization refers to the fact 
that the low-oxygen environment at high altitude can 
adversely affect all human systems, especially the respira-
tory system, and that along with prolonged stays at high 
altitude, the body will develop a series of adaptations to 
hypoxia [3]. Alterations in the respiratory system include 
changes in respiratory control, ventilation, gas exchange, 
lung mechanics and kinetics, and pulmonary vascular 
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physiology. However, travelers from lower altitudes to 
higher altitudes are still subject to hypoxic symptoms 
and plateau-related pulmonary hypertension, pulmonary 
edema, and other highland diseases [4]. Therefore, eluci-
dating the biological processes by which the body adapts 
to hypoxia is of great scientific value.

At the molecular level, human responses and adapta-
tions to the environmental stresses of high altitude and 
low oxygen are multifaceted and will be regulated by 
multiple genes in the nuclear genome. As transcription 
factors, hypoxia-inducible factor (HIF) and nuclear fac-
tor erythroid 2-related factor 2 (NRF2) drive genes medi-
ating cellular responses to hypoxia and oxidative stress, 
respectively [5]. HIF consists of two subunits, α and β, 
of which α subunit has a very short half-life under nor-
moxia, and only under hypoxia will α dimerize with the 
building block β subunit to form HIF, which combines 
with the hypoxia-responsive progenitor on hypoxic 
response genes and mediates the transcriptional expres-
sion of hypoxic response genes to produce adaptive 
physiological changes [6]. Mitochondria are the major 
reactive oxygen species (ROS) generators in hypoxic 
cells. ROS inactivate succinate dehydrogenase, leading to 
succinate accumulation. Succinate activates molecules to 
increase the body’s resistance to hypoxia [7]. Addition-
ally, Pham et al. found that acute high-altitude exposure u 
might sensitize the Toll-like receptor 4 (TLR4) signaling 
pathway to subsequent inflammatory stimuli [8]. Collec-
tively, the response of the organism’s systems to hypoxia 
is complex and multifaceted.

Hence, in order to elucidate the response in the human 
body after acute hypoxia exposure, we performed RNA 
sequencing (RNA-seq) and ATAC sequencing (ATAC-
seq) to observe the changes of transcriptome and chro-
matin accessibility in the peripheral blood of individuals 
exposed to hypoxia. We hypothesized that the differential 

expressed genes were associated with hypoxic acclimati-
zation and might be targets for the treatment of diseases 
associated with hypoxia-exposure.

Results
Differences in transcriptional profiles of three groups were 
not obvious
To determine systematic differences in the transcriptome 
landscape before and after entering into the simulated 
high-altitude environment, RNA-seq was performed on 
blood samples derived from 8 volunteers, including after 
adapting to an altitude equivalent to sea level for 1  h 
(baseline, group A, n = 8), after adapting to an altitude 
3500 m for 1 h (group B, n = 8), and after adapting to an 
altitude 4500 m for 1 h (group C, n = 8). At first, PCA was 
carried out based on the gene expression landscape. As 
shown in the score plot, samples from three groups were 
indistinguishable, which was further confirmed by PER-
MANOVA analysis (sample: R2 = 0.448, P = 0.009; group: 
R2 = 0.057, P = 0.611) (Fig.  1a). To separate the groups, 
supervised PLS-DA was carried out by fitting these sam-
ples. The PLS-DA model organized the replicates into 
three distinct clusters corresponding to the A, B, and C 
groups, with few outlier samples (Fig. 1b). Although the 
model fitted relatively well to the data set (R2Y value 
0.541), the predictive performance of the model was poor 
(Q2Y value − 0.17). Besides, the result of permutation test 
indicated that the model was overfitting (Fig. 1c). These 
findings illustrated that the global transcription profiles 
of the three groups might be not significantly different. 
Therefore, the difference between baseline (group A) and 
after entering the simulated high-altitude environment 
(group B or C) was further explored. Similar to the pre-
vious results, although clear between-group differences 
were observed in the score plots and the models pos-
sessed a reasonable fit, the models were overfitting with 

Fig. 1  Plots of the multivariate statistical comparisons among groups based on transcriptional profiles. a The score plot of the principal component 
analysis (PCA). Each point represents an individual sample. b The PLS–DA score scatter plot. c Permutation test for the PLS–DA model. Abscissa 
represents the permutation retention of permutation test, ordinate indicates the value of R2 (green dot) and Q2 (blue square) permutation test, 
and the two dotted lines represent the regression lines of R2 and Q2 respectively. R2 indicates the proportion of variance in the data explained 
by the model, and Q2 indicates the predictive accuracy of the model. Group A, after adapting to an altitude equivalent to sea level for 1 h. Group B, 
after adapting to an altitude equivalent to 3500 m for 1 h. Group C, after adapting to an altitude equivalent to 4500 m for 1 h
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low predictive performance (Additional file  1: Fig. S1). 
Additionally, different groups were indistinguishable in 
the RF models (Fig. 2).

Nevertheless, pairwise differential expression analysis 
was further performed with the three groups (i.e., com-
parison between baseline [group A] and after adapting to 
an altitude equivalent to 3500 m for 1 h [group B]; com-
parison between baseline [group A] and after adapting 
to an altitude equivalent to 4500 m for 1 h [group C]) to 
identify differentially expressed genes (DEGs). A total of 
93 differential genes were generated after 1 h post adap-
tation in a simulated plateau environment with 3500  m 
altitude, including 67 downregulated and 26 upregulated 
genes (Fig. 3a). Moreover, a total of 45 differential genes 
for group C was identified, of which three were expressed 
upregulated and 42 were expressed downregulated 
(Fig. 3b). The expression levels of these genes were pro-
vided as a heatmap (Additional file 2: Fig. S2a-b). Then, 
the Boruta algorithm, based on the RF machine learning 
algorithm, further confirmed seven (comparison between 
group A and B, Fig. 3c) and eight (comparison between 
group A and C, Fig. 3d) target genes, respectively, most of 
which were downregulated genes (Additional file  2: Fig. 
S2c-d). Moreover, we observed that inter-individual vari-
ability of these important genes was low. Taken together, 
the above results revealed that there were few differences 
in blood transcriptional profiles before and after entering 
into the simulated high-altitude environment.

ATAC‑seq analysis showed less noticeable differences 
between three groups
An ATAC-seq analysis was performed to explore changes 
in accessible regions in the genome after adaption to 
the simulated high-altitude environment with the three 
groups. We focused on the peaks located on the pro-
moter region. A PCA plot showed that the three groups 
could not be distinguished from each other on the basis 

of PC1 (13.53%) and PC2 (6.56%), which was further con-
firmed by PERMANOVA analysis (sample: R2 = 0.392, 
P = 0.001; group: R2 = 0.074, P = 0.482) (Fig. 4a). Different 
groups were clearly discriminated by the PLS-DA plot; 
however, these models were overfitting (Fig. 4b, c, Addi-
tional file 3: Fig. S3). Similar results were observed in the 
RF models (Fig.  5). Subsequently, pairwise comparative 
analysis based on the ATAC-seq data obtained from the 
three groups were performed to evaluate the differentially 
accessible regions (DARs), which resulted in 12 (compar-
ison between group A and B, Fig.  6a) and 15 (compari-
son between group A and C, Fig. 6b) DARs, respectively. 
We then plotted the expression levels of these DARs as 
a heatmap (Additional file  4: Fig. S4a-b). Additionally, 
using the Boruta algorithm, four (comparison between 
group A and B, Fig.  6c) and nine (comparison between 
group A and C, Fig. 6d) peaks were identified as impor-
tant. The chromatin accessibility of the genes related to 
these important peaks exhibited large heterogeneity 
between groups (Additional file 4: Fig. S4c-d). These find-
ings illustrated that the ATAC-Seq profiles in blood asso-
ciated with the promoter region were less impacted by a 
short period of adaptation to the simulated high-altitude 
environment.

Combined analysis of RNA‑seq and ATAC‑seq screened 
gene interaction
To establish the relationship between changes in gene 
expression and chromatin accessibility, we combined 
the results of RNA-seq with the results of ATAC-seq. 
A PPI analysis was performed on the 100 DEGs and 
16 DARs identified in 3500 m altitude adaption as well 
as 53 DEGs and 20 DARs identified in 4500 m altitude 
adaption (Fig.  7a, Fig.  8a). The PPI results indicate 
interactions between DEGs identified by RNA-seq and 
DARs identified by ATAC-seq. Additionally, interac-
tions between DEGs and DARs identified through 

Fig. 2  Random forest models for the exploration of group differences based on transcriptional profiles. a Multi-dimensional scaling (MDS) plot 
shows no differentiation among the three groups by random forest model. b MDS plot of random forest model to differentiate groups A and B. c 
MDS plot of random forest model to differentiate groups A and C
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differential expression analysis and the Boruta algo-
rithm were observed. Then, CytoHubba was used to 
screen top 10 hub genes for each of the 3500  m and 
4500  m altitude adaptations (Fig.  7b, Fig.  8b). Among 

these, CREB-binding protein (CREBBP), tumor necro-
sis factor receptor-associated protein (TRAP1), tubulin 
(TUB), and DnaJ (Hsp40) homolog subfamily A mem-
ber 3 (DNAJA3) were the shared hub genes in adapta-
tion to altitudes in 3500 m and 4500 m.

Fig. 3  Differentially expressed genes were identified by differential expression analysis and the Boruta algorithm. a The volcano plot 
indicates the results of the pairwise comparisons of genes in the blood samples from groups A and B. b Volcano plot presents the differences 
between groups A and C. c Relative importance of important genes between groups A and B computed using the Boruta algorithm. The horizontal 
axis is the names of genes, and the vertical axis is the Z-value of each gene. The box plot shows the Z-value of each gene during model calculation. 
d Relative importance of important genes between groups A and C

Fig. 4  Plots of the multivariate statistical comparisons among groups based on the ATAC-seq data. a The score plot of PCA. b The PLS–DA score 
scatter plot. c Cross-validation plot with a permutation test repeated 200 times
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In the biological process category, GO enrichment 
results revealed that hub genes primarily participated 
in response to hypoxia, response to decreased oxygen 

levels, response to oxygen levels, response to oxidative 
stress, and regulation of cellular response to oxidative 
stress. In the cellular component category, hub genes 

Fig. 5  Random forest models based on the ATAC-seq data. a MDS plot of random forest model to differentiate groups A and B. b MDS plot 
of random forest model to differentiate groups A and C

Fig. 6  Differentially accessible regions were identified by differential expression analysis and the Boruta algorithm. a Volcano plot showing 
differential accessible regions between groups A and B. b Volcano plot showing differential accessible regions between groups A and C. c Relative 
importance of important peaks between groups A and B. d Relative importance of important peaks between groups A and C
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were primarily associated with the mitochondrial matrix, 
mitochondrial intermembrane space, histone acetyltrans-
ferase complex, and acetyltransferase complex. In terms 

of molecular function, hub genes were primarily involved 
in protein folding chaperone, unfolded protein binding, 
adenosine triphosphate (ATP) hydrolysis activity, histone 

Fig. 7  PPI network construction and hub gene identification from groups A and B. a PPI network of all DEGs and DARs. b PPI network of the ten 
hub genes. Different colors represent different sequencing using different screening methods. Different shapes represent different sequencing 
techniques

Fig. 8  PPI network construction and hub gene selection from groups A and C. a PPI network of all DEGs and DARs. b PPI network of the ten hub 
genes
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acetyltransferase activity, ATP-dependent protein fold-
ing chaperone, and p53 binding (Fig. 9). KEGG pathway 
enrichment analysis showed that hub genes were mainly 

enriched in the viral carcinogenesis, Notch signaling 
pathway, long-term potentiation, and renal cell carci-
noma (Fig.  10). Notably, HIF-1 signaling pathway was 

Fig. 9  GO enrichment analysis of hub genes. a GO enrichment analysis between groups A and B. b GO enrichment analysis between groups 
A and C. The hub genes were enriched into three classifications of biological process (BP), molecular function (MF), and cellular components (CC)
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enriched in 4500 m altitude adaptations, not in 3500 m 
altitude adaptations. Accordingly, GO and KEGG enrich-
ment analyses both showed that hub genes were mainly 
enriched in biological processes and pathways closely 
related to hypoxia adaptation.

Discussion
Acute hypoxia typically occurs within a timescale of 
minutes to hours, during which the body has evolved 
exquisite mechanisms for adaptation. During hypoxia, 
transcription is mainly regulated by the HIFs. HIFs 
activates genes that control cellular oxygen homeosta-
sis, including genes involved in oxygen consumption, 

erythrocyte production, angiogenesis, and mitochon-
drial metabolism [9]. However, recently, it has been 
demonstrated that epigenetic regulators and chroma-
tin reprogramming are involved in the hypoxic stress 
response[10]. Thus, the transcriptome and chromatin 
accessibility changes in the peripheral blood of eight 
individuals were analyzed 1 h after adapting to simulated 
altitudes of 3500 m and 4500 m to better characterize the 
mechanisms of acute hypoxia adaptation. RNA-seq iden-
tified 100 DEGs for the 3500 m adaptation and 53 DEGs 
for the 4500 m adaptation. ATAC-seq revealed 16 DARs 
at 3500 m and 20 DARs at 4500 m. Additionally, ten hub 
genes were identified for each altitude, with functional 
enrichment analysis indicating their involvement in 
hypoxia-related biological processes.

The lack of significant differences in RNA and ATAC 
profiles between group A and group B, or group A and 
group C, can be attributed to several interrelated factors. 
Firstly, our data demonstrate substantial interindividual 
variability, as confirmed by PERMANOVA analysis. 
This high degree of variability can obscure clear cluster-
ing patterns in PCA. Secondly, the response to hypoxia 
involves a complex interplay of molecular mechanisms, 
including the stabilization and activation of HIFs and 
other downstream pathways. These intricate processes 
can vary widely between individuals, contributing to the 
observed dispersion in the PCA. Thirdly, the 1  h expo-
sure to hypoxia may not be sufficient to elicit strong, 
consistent effects across all individuals. Short-term 
hypoxia exposure might result in transient and variable 
responses, thereby impacting the clustering observed in 
the PCA analysis. These limitations underscore the need 
for further studies with extended exposure times and 
larger sample sizes to better understand individual-spe-
cific responses to hypoxia. Future research should also 
delve into the molecular mechanisms underlying these 
responses to elucidate the observed variability.

In our study, combined analysis of RNA-seq and 
ATAC-seq identified four shared hub genes—CREBBP, 
TRAP1, TUB, and DNAJA3—in adaptation to alti-
tudes of 3500  m and 4500  m. CREBBP, which belongs 
to the type 3 family of lysine acetyl transferases (KAT3), 
induces histone acetylation to relax the chromatin as 
epigenetic writers [11]. It binds to the transactivation 
domain of HIF-α to coactivate HIF-mediated transacti-
vation and is responsible for expression of about 30–50% 
of global HIF-1 downstream target genes [12]. TRAP1 is 
a mitochondrial chaperone from the Hsp90 family that 
regulates mitochondrial respiration by inhibiting the suc-
cinate dehydrogenase complex [13]. This inhibition leads 
to succinate accumulation, which stabilizes HIF1α and 
induces a “pseudo-hypoxic” state, promoting a shift from 
oxidative phosphorylation to glycolysis and maintaining 

Fig. 10  KEGG enrichment analysis of ten hub genes. a KEGG 
enrichment analysis between groups A and B. b KEGG enrichment 
analysis between groups A and C
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mitochondrial homeostasis, also providing cytoprotec-
tion [14]. Thus, our results coincide with the previous 
study, further supporting the significance of these genes 
in high-altitude adaptation. As for the other two genes, 
TUB and DNAJA3, although there is no clear evidence 
at present indicating their connection to hypoxia, their 
roles in sonic hedgehog signaling and mitochondrial 
translocation, respectively, may provide valuable insights 
for future research [15, 16].

Our study systematically elucidates the multifaceted 
biological functions and potential mechanisms of hub 
genes in hypoxia adaptation through GO and KEGG 
enrichment analyses. In the category of biological pro-
cesses, hub genes are primarily involved in response to 
hypoxia, oxygen levels, and oxidative stress. A decline 
in oxygen levels can alter gene transcription or result in 
post-translational modifications of proteins, leading to 
changes in cellular metabolism [17]. Except hypoxia, oxi-
dative stress also promotes the activity of HIFs [18, 19]. 
In the category of cellular components, the enriched GO 
terms mainly focus on mitochondrial components and 
acetyltransferase complexes. Mitochondria serve as key 
oxygen sensors and important signaling organelles, sign-
aling the onset of hypoxia by generating ROS through 
the electron transport chain [20]. Meanwhile, histone 
acetyltransferases are defined by a catalytic domain that 
facilitates the transfer of acetyl groups to lysine resi-
dues within the N-terminal tails of histones as well as 
other protein substrates [21]. Histone acetyltransferases 
directly acetylate HIF-α to modulate HIF transcriptional 
activity [22]. Molecular function analysis reveals that 
these hub genes not only play a role in maintaining the 
correct folding and functional stability of proteins but 
also provide energy through ATP hydrolysis, supporting 
various metabolic and stress responses [23–25]. In the 
KEGG pathway enrichment analysis, the Notch pathway 
is a key player in the complex interaction of regulatory 
pathways mediating hypoxic adaptation and is known to 
mediate numerous processes that are linked to cellular 
and tissue remodeling upon high-altitude exposure [26]. 
These findings are consistent with previous research, 
showing that changes in gene expression under hypoxia 
are intimately associated with alterations in chromatin 
structure. This unveils the multi-layered adaptive mech-
anisms of cells under hypoxic conditions and provides 
new perspectives for further exploration of the molecular 
mechanisms underlying related diseases.

There are several limitations in our study. Firstly, we 
only investigated changes in the transcriptome and chro-
matin in the peripheral blood of individuals exposed to 
hypoxic conditions for 1 and 2  h. These changed fac-
tors are more likely to act as early factors in response 
to hypoxic conditions to further activate downstream 

pathways to adapt to the hypoxic environment. Longer 
exposure time was likely to identify the meaningful dif-
ferences. However, it is unethical to increase the risk 
of individuals. Changes in mRNA transcriptome lev-
els do not adequately respond to organismal adaptation 
to hypoxia. As an example, the stability and activity of 
HIF-1α subunit are regulated by its post-translational 
modifications. HIF-1α is degraded via ubiquitin–protea-
some pathway in normoxia and is stable and interacts 
with coactivators and regulates the expression of target 
genes in hypoxia. Therefore, proteomics and metabo-
lomics assays are also needed for future studies. Finally, 
only eight individuals were included in our study. This 
sample size is insufficient considering the randomization 
and bias of transcriptome analysis.

Conclusions
In summary, we investigated the transcriptome and chro-
matin profiles in peripheral blood of individuals exposed 
to hypoxia for 1 and 2 h. Our results can provide the ref-
erence for the early response of the organism to hypoxic 
adaptation.

Methods
Sample collection
In this study, hypobaric chambers were used to reduce 
pressure from ambient barometric pressure to simulate 
high-altitude conditions. Eight male volunteers were 
recruited after signing written informed consent. They 
were healthy unrelated individuals with normal blood 
tests and no other hereditary disease. The mean age was 
21 ± 3  years, and body mass index was 23.4 ± 3.7  kg/m2. 
Exclusion criteria were as follows: travel > 2500 m within 
3 month of the first measurements, a previous history of 
high-altitude pulmonary or cerebral oedema, smoking 
and pregnancy according to Path’s study [8]. All experi-
ments were approved by the Biological and Medical Eth-
ics Committee of Beijing University of Aeronautics and 
Astronautics.

Peripheral blood samples from eight male volunteers 
were obtained at three distinct time points. Initially, 
blood samples were taken after maintaining an atmos-
pheric pressure of 760  mmHg (equivalent to sea level) 
for 1 h (baseline, group A). Subsequently, the hypobaric 
chambers were programmed to reduce the atmospheric 
pressure from 760 to 493  mmHg (equivalent to an alti-
tude of 3500 m) at a rate of 5 m/s, which was then main-
tained for 1 h (group B). Finally, the atmospheric pressure 
was further decreased to 448  mmHg (equivalent to an 
altitude of 4500 m) at the same rate of 5 m/s and main-
tained for another hour (group C). Blood sample was 
snap-frozen in liquid nitrogen and stored at − 80  °C 
until further processing. The study was conducted in a 
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single-blind manner (with volunteers), and the sample 
collection, experimental procedures, and analyses were 
carried out by three independent teams of researchers.

RNA isolation, library preparation, and sequencing
The total RNA in blood samples was extracted accord-
ing to the instruction manual of the TRlzol Reagent (Life 
technologies, California, USA). RNA concentration, 
purity, and integrity was assessed according to the pub-
lished study [27]. Sequencing libraries were generated 
using 1  μg qualified RNA by a NEBNext Ultra™ RNA 
Library Prep Kit for Illumina (NEB, USA) following the 
manufacturer’s recommendations, and index codes were 
added to attribute sequences to each sample. Clustering 
of the index-coded samples was performed on a cBot 
Cluster Generation System using a TruSeq PE Cluster Kit 
v4-cBot-HS (Illumina) according to the manufacturer’s 
instructions. After cluster generation, the library prepa-
rations were sequenced on an Illumina platform and 
150 bp paired-end reads were generated.

ATAC library preparation and sequencing
About 50,000 cells were subjected to centrifugation for a 
duration of 5 min (500 g, 4  °C), followed by the remov-
ing of supernatant. The cells were washed with cold 
PBS once and centrifuged for 5  min (500  g, 4  °C), after 
which the supernatant was removed. Then, cells were 
suspended with cold lysis buffer and centrifuged again 
(10  min, 500  g, 4  °C) to remove the supernatant. The 
transposing reaction system was configured with the 
Tn5 Transposase. The cell nuclei were suspended with 
the transposing reaction system, and the DNA was puri-
fied after incubation at 37 °C for 30 min. The PCR reac-
tion system was configured with the purified DNA, and 
then the PCR amplification reaction was performed. The 
final DNA libraries were sequenced on Illumina NovaSeq 
platform after the DNA was purified.

RNA‑seq data analysis
Raw data (raw reads) were firstly processed through in-
house perl scripts. In this step, clean data (clean reads) 
were obtained by removing reads containing adapter, 
reads containing ploy-N, and low-quality reads from raw 
data. All the subsequent analyses were based on clean 
data. Paired-end reads were aligned to the human ref-
erence genome by Hisat2 with default parameters, fol-
lowed by HTSeq-count to count the reads mapped to 
the genome [28, 29]. Then, a count matrix was used as 
the input to identify the differentially expressed genes 
(DEGs) between different groups by the DESeq2 package 
[30]. Candidate genes with greater than twofold changes 
at P values < 0.05 were considered to be significant DEGs.

ATAC‑seq data processing
Raw reads were filtered to remove adapters and low-qual-
ity reads, and then high-quality clean reads provided in 
FASTQ format were obtained for subsequent informa-
tion analysis. The Bowtie2 software was used to compare 
the high-quality reads obtained from the sequencing of 
each sample with the reference genome. Properly paired-
end reads with high mapping quality score (MAPQ) 
were retained in analysis with Samtools [31]. Low-qual-
ity mapping reads (MAPQ < 10) and duplicated reads 
were omitted for further analysis. ATAC-Seq peaks were 
called using MACS2 [32]. Differential accessible regions 
(DARs) analysis of two conditions/groups was performed 
using DESeq2 package [30]. Genes with greater than two-
fold changes at P values < 0.05 found by DESeq2 were 
assigned as DARs.

Multivariate statistics and biomarker selection
The processed data were analyzed by R package (ropls), 
where it was subjected to multivariate statistical analy-
sis, including principal component analysis (PCA) and 
partial least squares discriminant analysis (PLS-DA). For 
the PLS–DA models, the R2Y (goodness of fit) and Q2Y 
(goodness of prediction) values were used to assess the 
performance of each model. Models were further vali-
dated for fit (R2) and predictability (Q2) by a permuta-
tion test performed with 200 random permutations. To 
identify the effect of factors affecting the differences 
between RNA-seq or ATAC-seq profiles from different 
individuals, permutational multivariate analysis of vari-
ance (PERMANOVA) will be used.

Random forest (RF) ensemble learners provide esti-
mates of variables (genes or peaks) importance [33]. 
Higher importance represents a more important variable 
in distinguishing different groups. Here, the Boruta fea-
ture selection method was adopted to identify the most 
important variables [34].

All the differentially expressed genes and features were 
used to construct the protein–protein interaction (PPI) 
network by STRING (https://​string-​db.​org/). The hub 
genes in the PPI network were identified by using Cyto-
Hubba plugin [35], based on maximal clique centrality 
(MCC) algorithms. Finally, Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed for functional gene 
annotation of these hub genes.
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