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Abstract 

Background Molecular interactions between proteins and their ligands are important for drug design. A pharma-
cophore consists of favorable molecular interactions in a protein binding site and can be utilized for virtual screen-
ing. Pharmacophores are easiest to identify from co-crystal structures of a bound protein-ligand complex. However, 
designing a pharmacophore in the absence of a ligand is a much harder task.

Results In this work, we develop a deep learning method that can identify pharmacophores in the absence 
of a ligand. Specifically, we train a CNN model to identify potential favorable interactions in the binding site, 
and develop a deep geometric Q-learning algorithm that attempts to select an optimal subset of these interaction 
points to form a pharmacophore. With this algorithm, we show better prospective virtual screening performance, 
in terms of F1 scores, on the DUD-E dataset than random selection of ligand-identified features from co-crystal struc-
tures. We also conduct experiments on the LIT-PCBA dataset and show that it provides efficient solutions for identify-
ing active molecules. Finally, we test our method by screening the COVID moonshot dataset and show that it would 
be effective in identifying prospective lead molecules even in the absence of fragment screening experiments.

Conclusions PharmRL addresses the need for automated methods in pharmacophore design, particularly in cases 
where a cognate ligand is unavailable. Experimental results demonstrate that PharmRL generates functional pharma-
cophores. Additionally, we provide a Google Colab notebook to facilitate the use of this method.
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Background
An essential part of computer-aided drug design is elu-
cidating important molecular interactions between 
proteins and their ligands. One way to describe these 
molecular interactions is by depicting a 3D arrange-
ment of protein-ligand interaction features known as 
a pharmacophore. A pharmacophore is a set of interac-
tion features, also known as pharmacophore features, 

that describe the favorable interactions between a pro-
tein binding site and a ligand. It can be used for screening 
large libraries through efficient pattern matching algo-
rithms implemented by open source softwares such as 
Pharmit [1, 2]. An example pharmacophore is shown for 
the caffeine molecule in Fig. 1.

Pharmacophores are also useful in more situations than 
just virtual screening. Several machine learning meth-
ods take advantage of pharmacophores obtained from 
co-crystal structures to enhance protein-ligand scoring 
functions [3, 4]. Furthermore, there have also been a few 
de novo molecular generation methods that utilize phar-
macophores as conditioning and guidance so that gen-
erated molecules have desired pharmacophore features 
[5–8].
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Developing a useful pharmacophore typically requires 
a co-crystal structure of a protein and its cognate ligand. 
This is because bound structures provide enriched fea-
tures that can be considered ground truth favorable 
interactions for protein-ligand binding. This requirement 
can be a significant obstacle in many real-world drug dis-
covery projects, where bound co-crystal structures are 
often unavailable.

Traditional methods for generating pharmacophore 
features in the absence of a ligand typically involve intro-
ducing molecular fragment probes into the binding site 
to identify areas with high affinity [9–11]. Another strat-
egy involves molecular dynamics simulations of the tar-
get protein in a simulation environment containing probe 
molecules with varying chemical properties. This helps 
pinpoint regions where these probes occur frequently 
[12]. Subsequently, experts manually select and com-
bine a subset of these interaction features to construct a 
concise pharmacophore [13, 14]. FRESCO [15] follows a 
novel approach that avoids filtering features. They use the 
fit of molecules on distributions of pharmacophore fea-
ture distances to rank molecules.

Once interaction features are identified, they need 
to be ranked and grouped together to form a pharma-
cophore. Several methods exist for ranking interac-
tion features at binding sites. These methods involve 
the calculation of interaction energies at feature points 
[16], while others focus on identifying key pocket 
atoms for binding [17] and prioritize interaction fea-
tures in close proximity to these atoms. Recently, a 
method known as Apo2ph4 [18] was developed for 

automating the selection process of a subset of phar-
macophore features. Apo2ph4 evaluates each feature 
point by considering both the proximity of other simi-
lar features and the interaction energies associated 
with that point. The resulting pharmacophore is then 
composed of features whose scores exceed a prede-
termined threshold. Finally, in certain limited cases, 
homology models may also be used to elucidate phar-
macophores [19, 20]. However, these approaches have 
notable limitations.

Firstly, the pharmacophore features obtained through 
these methods are influenced by the biases inherent 
to the docking and simulation protocols employed. 
Secondly, the final step of constructing the pharmaco-
phore heavily relies on human insight. Furthermore, 
methods that try to filter out pharmacophore features 
evaluate each feature in isolation rather than consider-
ing its contribution to a fully-formed pharmacophore. 
These factors collectively underscore the need for more 
experimental, data-driven approaches to generate phar-
macophore features. Additionally, there is a need for the 
development of automated tools for pharmacophore 
modeling that can still benefit from expert guidance.

To address this requirement, we developed a CNN 
model and a deep geometric Q-learning algorithm 
to identify interactions features and elucidate phar-
macophores. The method is demonstrated to strong 
performance in retrospective virtual screening experi-
ments across several datasets such as Dataset of Useful 
Decoys - Enhanced (DUD-E) [21], LIT-PCBA [22], and 
COVID Moonshot [23].

Fig. 1 Pharmacophore model with several pharmacophore features that matches the caffeine molecule (caffeine molecule included 
for illustration). The colors of the feature points are as follows: aromatic—purple, hydrogen acceptor—blue, hydrophobic—green
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Methods
In this method, we trained a convolutional neural net-
work (CNN) model to identify favorable points of inter-
actions (pharmacophore features) on the binding site 
and developed a deep geometric Q-learning algorithm 
that attempts to select an optimal subset of these interac-
tion points to form a pharmacophore. The CNN model 
is trained on pharmacophore features derived from pro-
tein-ligand co-crystal structures and is iteratively fine 
tuned with adversarial examples to ensure predicted 
points of interaction are physically plausible and close to 
relevant functional groups on the protein. The reinforce-
ment learning algorithm employs an SE(3)-equivariant 
neural network [24] as the Q-value function. This net-
work progressively constructs a protein-pharmacophore 
graph. It does so by either choosing to incorporate an 
available pharmacophore feature into the graph or deter-
mining that the current graph is already optimal. The 
pipeline for the method is shown in Fig. 2. Importantly, 
this framework still has the ability to accommodate 
expert guidance in selecting and adding features while 

automating a significant portion of the traditional phar-
macophore elucidation process.

Pharmacophore definition
A pharmacophore is defined as a set of points {Vf } that 
propose positions of interactions between the give pro-
tein binding site and a potential ligand. More specifi-
cally each point in a pharmacophore has a 3D coordinate 
Xf ∈ R

3 and feature class Zf  . The feature class is defined 
to be any of the following: {Hydrogen Acceptor, Hydro-
gen Donor, Hydrophobic, Aromatic, Negative Ion and 
Positive Ion} . Pharmacophore search software such as 
Pharmit [1] can be used to retrieve molecules that can 
satisfy the feature and position constraints specified by 
a given pharmacophore. In this work, pharmacophores 
are developed in two major steps. First, potential points 
of interactions on a binding site are identified using a 
convolution neural network (CNN). A subset of these 
identified points are then selected with a reinforcement 
learning model to form a pharmacophore. More details 
follow in subsequent sections.

Fig. 2 Pharmacophore prediction pipeline. CNN is used to predict pharmacophore features from gridded binding site (top). Protein—
pharmacophore graph is built by sequentially adding feature and protein nodes to it using RL framework (bottom)
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Molecular conformation generation and pharmacophore 
screening
Molecule conformers for pharmacophore screening are 
generated using RDKit [25] for the DUD-E and Covid 
Moonshot datasets, with 25 energy minimized con-
formers produced per molecule. The LIT-PCBA dataset, 
however, is prohibitively large for conformation genera-
tion. Therefore, we submit the list of molecules from this 
dataset directly to the Pharmit server [26]. This approach 
saves on compute as Pharmit’s database already con-
tains conformers for most of these molecules due to sig-
nificant overlap with other datasets hosted on the server. 
By default, Pharmit stores 20 conformers per molecule. 
Pharmit is also used to screen pharmacophores on these 
conformers. The software retrieves and aligns conform-
ers that match the spacial restraints specified by the 
pharmacophore, with a tolerance radius of 1 Å for all 
of its features. We also remove conformers that overlap 
with the protein (receptor exclusion in pharmit) from the 
screening results. We ensure that only 1 conformer per 
molecule is returned by the software to calculate our per-
formance metrics.

CNN training
The CNN model is trained to predict whether a given 
point on the binding site is a plausible point of interac-
tion. Specifically, the CNN predicts if any of the six fea-
ture classes are present at the given point. It is trained 
in a multilabel classification manner so that it can pre-
dict the presence of multiple classes at the evaluated 
point. This approach accounts for overlap between dif-
ferent classes. For instance, certain aromatic groups can 
be viewed as hydrophobic, and similarly, some hydrogen 
acceptor groups may also be regarded as negative ion 
functional groups with the ability to form salt bridges.

The CNN takes as input, a voxelized representation of 
the protein structure located in a cubic volume of edge 
9.5 Å, at a resolution of 0.5 Å, centered at the point. The 

libmolgrid [27] python library with its default atom types 
is used for voxelizing the protein structure. The model 
is trained for 256 epochs, with a batch size of 256, using 
the adam optimizer at a learning rate of 1e−5. The model 
checkpoint with the best metrics on the test set is saved. 
The CNN architecture is provided in Fig. 3.

The model is initially trained on pharmacophore fea-
tures extracted from the PDBBind V. 2019 dataset [28]. 
For each structure we use pharmacophore feature inter-
action points identified by Pharmit as our training sam-
ples. The command line used for to extract features for 
each crystal structure is pharmit pharma -recep-
tor receptor.pdb -in ligand.mol2 -out 
pharmit.json. The extracted dataset is split into three 
cross-validation folds with data points (pharmacoph-
ore features) from similar ligands being in the same fold. 
Ligand similarity is determined by Tanimoto similarity 
over RDKit [25] fingerprints. Two ligands with a Tani-
moto similarity greater than 0.9 are considered to be sim-
ilar and are clustered together into the same fold. In total 
we have 157,252 data points with approximately 104,835 
data points in the training sets and 52,417 data points in 
the test sets. We train separate models for each fold and 
use the best performing model for inference.

To enhance the robustness of pharmacophore fea-
ture predictions, the CNN undergoes retraining with 
adversarial samples. Adversarial samples are generated 
through a two-step process. Firstly, the protein binding 
sites are discretized at a resolution of 0.5 Å, and the CNN 
is evaluated at each grid point. Predictions that are too 
close to protein atoms are labeled as negative. Addition-
ally, predictions where complementary functional groups 
of interest on the protein are too distant are collected 
as adversarial samples. For instance, hydrogen acceptor 
predictions beyond 4 Å from any hydrogen donor func-
tional group on the protein are considered negatives. 
Thresholds for pharmacophore features and their com-
plementary functional groups are outlined in Table  1. 

Fig. 3 CNN architecture for predicting pharmacophore feature points. The CNN takes the local grid around the query point as input and provides 
confidence scores on the presence of the 6 classes at that point
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Complimentary functional groups on the protein are 
found using the same SMART strings as those defined in 
Pharmit. The adversarial samples are then added as nega-
tive data points to the training set to retrain the model.

From CNN predictions to pharmacophore features
Pharmacophore features are individual interaction points 
found in the binding site. One key assumption is that 

these features should be in proximity to complementary 
interaction feature groups on the protein. These features 
are inferred through a multi-step process.

The pharmacophore generation process can be viewed 
in Fig.  4. As before, the binding site is first gridded at 
a resolution of 0.5 Å and the CNN is evaluated at each 
grid point. This results in a dense grid of feature confi-
dences. Once this is done we need to determine the 
number of feature points that have to be extracted from 
each connected component. We use the complimentary 
functional groups on the protein that are close to the 
connected components (Fig. 4b) to determine the num-
ber of feature points by taking the top predicted point 
(Fig. 4c) within a distance threshold (refer to Table 1 for 
the thresholds) to it.

Finally, feature points are refined by grouping predic-
tions that are near each other through agglomerative 
clustering. A distance threshold of 1.5 Å is used as crite-
ria for merging clusters and the centroid of each cluster is 
taken as the predicted pharmacophore feature (Fig. 4d).

Table 1 Pharmacophore interaction distance thresholds

Pharmacophore 
feature

Protein feature Min 
distance 
threshold

Max 
distance 
threshold

Aromatic Aromatic 1.5 7

Hydrogen acceptor Hydrogen donor 1 4

Hydrogen donor Hydrogen acceptor 1 4

Hydrophobic Hydrophobic 1.5 5

Negative ion Positive ion 1.5 5

Positive ion Negative ion 1.5 5

Fig. 4 Steps followed to obtain pharmacophore feature points from a CNN predictions on a binding site
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Formation of pharmacophores from features
A subset of the candidate pharmacophore features are 
selected to form a full pharmacophore. This process is 
modeled as a reinforcement learning problem. Specifi-
cally, the method is a deep Q-learning framework that 
utilizes a SE(3)-equivariant neural network [24] to model 
the Q value function. The RL algorithm is trained on the 
Dataset of Useful Decoys - Enhanced (DUD-E) dataset as 
it provides an extensive set of actives and decoys for each 
protein-ligand system in its dataset.

Why reinforcement learning
Modeling pharmacophores presents a substantial chal-
lenge because it involves selecting a concise set of fea-
tures suitable for virtual screening. Pharmacophores are 
built by combining specific features, and this combina-
tion greatly influences their performance. Notably, add-
ing or removing a single feature can significantly impact 
the overall performance, making it challenging to assess 
the individual importance of each feature in isolation. 
This complexity poses a hurdle for traditional supervised 
learning approaches, such as the CNN.

However, reinforcement learning (RL) offers a differ-
ent perspective. RL has the potential to consider the 
long-term consequences of adding a single feature to 
a pharmacophore. Consequently, a RL algorithm can 
sequentially incorporate features into a pharmacophore 
model while considering the overall value of the fully 
formed pharmacophore, rather than just the immediate 
value of each individual feature added along the way.

Pharmacophore selection as a Markov decision process 
(MDP)
The generation of the pharmacophore follows an itera-
tive process via the construction of a heterogeneous 
3D graph. The graph contains “pharmacophore” nodes 
({Vf  }) representing pharmacophore features and “protein 
nodes” ({Vp }) that contain the protein atoms in proximity 
of the bespoke pharmacophore features. Each iteration 
involves adding pharmacophore feature nodes and their 
associated protein atoms to the graph. The structure of 
the graph in the next step depends entirely on its current 
state, making the process akin to a Markov decision pro-
cess (MDP).

In the context of reinforcement learning, a Markov 
decision process (MDP) is defined with a set of states 
s ∈ S that provide information of the environment, 
actions a ∈ A that help in moving from the current state 
to the next state , and a reward function R(s, a) → R that 
provides a reward value for state-action pair.

Here, at a given time-point (t) in the iterative process, we 
define a state ( st ) as a heterogeneous protein-pharmacophore 

graph denoted as Gt(Vf ,Vp,Ef ,f ,Ef ,p) , consisting of phar-
macophore feature nodes ( Vf  ), protein nodes ( Vp ), and 
edges ( Ef ,f  and Ef ,p ) connecting feature nodes to features 
and protein nodes. The edges are formed based on prede-
fined distance thresholds δf ,f  and δf ,p.

This definition leads to a set of possible states {st+1} 
that can be reached at time-point t + 1 by considering 
the addition of a feature not present in the current graph 
but within a distance of δf ,f  from any feature node in the 
graph. This results in a set of proposed graphs denoted 
as {Gt+1} . The current graph Gt is also added to this set, 
forming a superset {st+1} = {{Gt+1},Gt} . The action ( at ) 
then involves selecting one of the graphs from this pro-
posal set as the next state. If the current graph is selected, 
the process terminates.

The reward for each step rt = R(st , at) = R(Gt+1) is 
calculated based on the F1 score obtained by running the 
pharmacophore, obtained as a combination of the features 
nodes in the graph Gt+1 , on a dataset containing actives 
and decoys. Pharmit, the tool used, requires a pharmaco-
phore with at least 3 nodes to screen molecules. Therefore, 
until the current graph has at least 3 nodes, we assign a 
reward of 0 and do not include the current graph in the 
proposal set. A schematic representation of the MDP pro-
cess at time-point t is given at Fig. 5.

Deep Q‑learning
The objective of reinforcement learning is to learn a 
policy π∗ : S → A that maximizes the cumulative (dis-
counted) reward you obtain from a MDP. In Q-learning, 
the function Q(s, a) is trained to predict future rewards 
given an action on a state. In this context, for a policy π 
the Q-value of a state action pair is given by:

where γ is a predetermined reward discount factor. 
The discount factor implicitly weighs the importance 
of the immediate reward with respect to the cumula-
tive reward. The optimal policy defined at a state then is 
π∗(s) = argmaxaQ

π∗
(s, a) . For this problem this equa-

tion translates to:

A SE(3)-equivariant neural network is used to param-
eterize the Q function (Fig.  6). The neural network is 
trained to minimize the objective l(θ) = E[yt − Q(Gt; θ)] 
where θ is the parameter set of the neural network and yt 
is given by:

(1)Qπ (st , at) = Qπ (Gt , at) = Qπ (Gt+1) = E

T

i=t

γ i−t ∗ ri

(2)π∗(Gt) = argmaxGt+1
Qπ∗

(Gt+1)

(3)yt = rt + γ ∗maxGt+2
Q(Gt+2; θ)
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Graph featurization
We construct heterogenous graphs G(Vf ,Vp,Ef ,f ,Ef ,p) , 
consisting of pharmacophore feature nodes ( Vf  ), pro-
tein nodes ( Vp ), and edges ( Ef ,f  and Ef ,p ) connecting 
feature nodes to features and protein nodes. Since we 
model a 3D graph, each node has a 3D coordinate in 
addition to node features. Therefore, we can construct 
our edges Ef ,f  and Ef ,p using appropriate distance 
thresholds ( δf ,f  ) and ( δf ,p ). The thresholds themselves 
were decided through hyperparameter sweeps. The 
node features for the protein nodes are one-hot encod-
ings of the atom types defined by the libmolgrid library. 
The atom types are listed in Table 2. The node features 
for the interaction feature nodes are the output of the 
final hidden layer of the CNN. We use the output from 
the CNN as it is essentially an embedding of the local 
information around that point. The edge features pro-
vided to the model are a radial Gaussian basis embed-
ding of the edge distance.

Q‑function neural network
We train an SE(3)-equivariant graph neural network as 
our Q-function. The neural network consists of separate 
embedding layers for the different node and edge types, 
k message passing layers, a global mean pooling aggrega-
tion layer and a final fully connected layer that predicts 
the Q-value. The input graph has two types of edges: fea-
ture node–protein node and feature node–feature node. 
To model this heterogeneity we have separate message 
passing weights for the two edge types.

The message passing layers in our model utilize SE(3)
NN convolution layers, implemented through the 
e3nn Python package [29]. These convolution layers 
are based on a spherical harmonic basis with varying 
orders represented by “l” and operate on scalar features 
( l = 0 ), vector features ( l = 1 ), and higher-order fea-
tures ( l > 1 ). In our implementation, we do not exceed 
l = 2 . Additionally, for the convolution, we model our 
edge features by a concatenation of the scalar features 
of the nodes involved and the edge embedding.

Fig. 5 MDP process used for iterative construction of the protein-pharmacophore graph. At each time-point t, the action is to chose the next graph 
( Gt+1 ). The environment takes this and provides a F1 score for that pharmacophore, along with possible graphs to choose from ( {Gt+2} ) for the next 
iteration

Fig. 6 The SE(3)-equivariant neural network takes a protein-pharmacophore graph as input and predicts the Q-value
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The SE(3)NN commences with basic scalar node fea-
tures and progressively generates higher-order features 
with both odd and even parity as the network deepens, 
accomplished through tensor product convolutions. To 
determine the network’s width, we define two parameters: 
ns determines the number of scalar features produced by 
each layer, while nv dictates the number of higher-order 
features of each type ( l = 1 , l = 2 ) for both odd and even 
parity. We use ns = 32 and nv = 8 for our neural network.

Training details
The DUD-E dataset is split into training and test sets, 
with the test set being the diverse subset of the DUD-E 
dataset. This subset contains 8 proteins that are repre-
sentative of all the proteins in the dataset. The neural 
network operates on a protein-pharmacophore graph 
as input. Protein nodes are represented by atom types, 
while pharmacophore nodes take as features the output 
of the final hidden layer of the CNN. The final hidden 
layer of the CNN can be interpreted as an embedding 
of the local environment around the feature point. It 
provides a latent vector of size 32. Initially, the model is 
trained using pharmacophore features extracted from 
protein-ligand co-crystal structure and is then fine-tuned 
using pharmacophore features obtained from CNN pre-
dictions. Since the ligand features are obtained from 
crystal structures, they also have directional information 
about aromatic/hydrogen bonding interations between 
the ligand and the protein which are used while evaluat-
ing generated pharmacophores. A hyperparameter sweep 
was also conducted while training on pharmacophore 
features extracted from the cognate ligand. The model 

that provides the best mean F1 score on ligand extracted 
features is used to train an ensemble of 5 models on 
CNN-predicted features.

The training algorithm goes through the protein-ligand 
systems in the training set, generating training samples 
through episodes simulated using an ǫ-greedy policy. ǫ
-greedy balances exploration and exploitation by set-
ting a probability ǫ by which a random action is taken 
as compared to taking the action decided by the neural 
network. While training the epsilon decays exponentially 
according to the equation ǫt = ǫT + (ǫo − ǫT ) ∗ e

(−t/α) , 
where ǫo and ǫT are initial and final epsilons, and α is a 
predetermined decay rate parameter. Using this, the ini-
tial iterations of RL training is focused on exploring as 
many graphs as possible. Later iterations are focused on 
optimizing the learnt policy based on the graphs sampled 
by the neural network as the neural network has better 
graph proposals. While training on ligand based features, 
an ǫo value close to 0.9 is used, but when fine-tuning on 
CNN features ǫo = 0.5 is used as lesser amount of explo-
ration is required at this stage.

To simulate an episode, we begin by randomly select-
ing a protein-ligand system from the dataset. Initially, 
we set up an empty protein-pharmacophore graph as 
the starting state. In the first step of the simulation, the 
policy is allowed to select any pharmacophore feature, 
along with its corresponding protein atoms, to add to 
the graph. Subsequent steps only permit the addition of a 
feature node (and its associated protein atoms) if they are 
within a distance of δf ,f  from the feature nodes already 
present in the graph. This criterion is used to generate a 
set of proposed graphs for the next step. Additionally, if 
the current graph contains at least 3 feature nodes, it is 
included in this set.

At each step, the policy selects a graph from this pro-
posal set, and the associated reward for that action is col-
lected. This process continues iteratively until either the 
same graph is selected again or the maximum number of 
steps (T) allowed in an episode is reached. While training 
on ligand features we set T = 10 and on CNN features we 
set T = 5

We maintain a replay memory M of capacity N that 
stores the latest training samples generated from the 
simulations. In addition we use a separate target neural 
network with fixed parameters that provides the target 
for training the Q function neural network. This stabi-
lizes training of the neural network. Every C episodes, the 
parameters of the target network are updated as a linear 
combination of the target and Q function network param-
eters. The importance given to the target network param-
eters in the update is defined by another parameter τ.

The full training algorithm is provided in Algorithm 1.

Table 2 Atom types used to featurize protein nodes

Atom type name Atom 
type 
number

AliphaticCarbonXSHydrophobe 1

AliphaticCarbonXSNonHydrophobe 2

AromaticCarbonXSHydrophobe 3

AromaticCarbonXSNonHydrophobe 4

Bromine Iodine Chlorine Fluorine 5

Nitrogen NitrogenXSAcceptor 6

NitrogenXSDonor NitrogenXSDonorAcceptor 7

Oxygen OxygenXSAcceptor 8

OxygenXSDonorAcceptor OxygenXSDonor 9

Sulfur SulfurAcceptor 10

Phosphorus 11

Calcium 12

Zinc 13

GenericMetal Boron Manganese Magnesium Iron 14
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Algorithm 1 Deep Q-learning algorithm to train Q function network

Hyperparameter sweep
To identify the optimal combination of parameter values, we 
perform a Bayesian hyperparameter search during the train-
ing process using pharmacophore features from the ligand. 
We keep track of the mean F1 score on the test set for mod-
els trained with various parameter combinations, and we 
select the parameter set that yields the highest F1 score.

This hyperparameter search is executed through the 
use of wandb (https:// wandb. ai/ site). A comprehensive 
list of hyperparameters and their respective selected val-
ues can be found in Table 3.

Performance metrics
We evaluate the methods presented in this work through 
several metrics. To calculate these metrics we define the 
following:

• True positives (TP): # of molecules returned by the 
pharmacophore that are known to be actives

• False positives (FP): # of molecules returned by the 
pharmacophore that are known to be decoys

• True negatives (TN): # of molecules not returned by 
the pharmacophore that are known to be decoys

• False negatives (FN): # of molecules not returned by 
the pharmacophore that are known to be actives

 The metrics we evaluate the methods on are

• Hit rate: The hit rate is given by 

• Precision: The precision is given by 

• Recall: The recall is given by 

• F1 score: The F1 score is given by: 

(4)HR =
TP + FP

TP + FP + TN + FN

(5)P =
TP

TP + FP

(6)R =
TP

TP + FN

(7)F1 =
2 ∗ P ∗ R

P + R

https://wandb.ai/site
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• Enrichment factor The enrichment factor is given 
by: 

• Guner‑Henry  The Guner-Henry metric is given by: 

We place emphasis on the F1 score and the enrich-
ment factor for our experiments. The F1 score is used as 
it remains relatively unbiased for an unbalanced dataset. 
The enrichment factor provides a quantitative compari-
son on the number of actives in our hits vs the dataset, 
thus providing how much our screening approach has 
enriched our hits.

Results
We show that this algorithm has the potential to provide 
performant solutions in virtual screening experiments on 
the Dataset of Useful Decoys - Enhanced (DUD-E) [21] 
and LIT-PCBA [22] datasets. We also test the method on 
screening the COVID Moonshot dataset [23] and show 
that it would provide pharmacophores with the ability to 
identify binding molecules even in the absence of frag-
ment screening experiments.

CNN models successfully classify pharmacophore feature 
points
The CNN model is initially trained using features 
extracted from co-crystal structures. It is worth 
emphasizing that every data point in this dataset is 

(8)EF = P/
TP + FN

TP + FP + TN + FN

(9)
GH =

[

TP ∗ (3 ∗ (TP + FN )+ TP + FP)

4 ∗ (TP + FN ) ∗ (TP + FP)

][

1−
FP

TN + FN

]

associated with at least one of the classes, and in such 
cases, the model accurately predicts the corresponding 
classes with high precision. The ROC-AUC for each 
class surpasses 0.95, and detailed class-specific ROC-
AUC scores can be found in Table 4. Subsequently, the 
CNN undergoes retraining using adversarial examples 
to enhance the robustness of its predictions during 
inference. Importantly, this retraining has a negligi-
ble impact on the model’s classification performance. 
Furthermore, certain false positives are accounted for 
by ensuring that generated features are at appropri-
ate distance from the relevant function groups on the 
protein. The feature prediction algorithm provides an 
average of 136 features per a binding site in the DUD-E 
dataset. An example of what this looks like is shown in 
Additional File 1: Figure S1.

RL models provide at least one good solution 
on the DUD‑E diverse subset
The diverse subset of the DUD-E dataset is used to test 
the RL algorithm. This subset, provided by the developers 
of the DUD-E dataset, represents all the protein classes 

Table 3 Hyperparameter options searched through for RL Q function model

Parameter Type Search space Value

Batch norm Categorical True, False True

Batch size Integer Range [16, 64] 50

Epsilon decayα Float Range [5000, 25,000] 11,967

Epsilon finalǫT Float Range [0.02, 0.005] 0.017

Epsilon startǫo Float Range [1, 0.8] 0.836

Discount factorγ Float Range [1, 0.45] 0.8636

Learning rate Float Range [0.001, 0.00001] 0.00012

Memory size N Integer Range [500, 2000] 1893

Number of message passing layers k Integer Range [4, 8] 6

Number of episodes E Integer Range [10,000, 25,000] 16,752

Feature - feature node distance thresholdδf ,f Integer Range [12, 15] 12

Feature - protein node distance thresholdδf ,p Integer Range [8, 12] 11

Target update frequency C Integer Range [1, 10] 2

Target update importanceτ Float Range [0.5, 1] 0.686

Table 4 CNN pharmacophore feature classification on ligand 
feature points

Pharmacophore feature ROC‑AUC 

Aromatic 0.9821

HydrogenAcceptor 0.9586

HydrogenDonor 0.9514

Hydrophobic 0.9724

NegativeIon 0.9768

PositiveIon 0.9769
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present in the dataset. For each system in the DUD-E 
dataset, all possible combinations of pharmacophore fea-
tures from the cognate ligand are enumerated. Since the 
best possible F1 score differs from system to system, the 
F1 score normalized by the maximum possible F1 achiev-
able from the ligand features is reported. We notice that 
the best F1 score across all systems are from pharma-
cophores that are either of size 3, 4, or 5; therefore, the 
mean of all possible pharmacophores of max size 5 are 
considered as a random selection baseline.

To evaluate the performance of a supervised learning 
approach for pharmacophore generation that ranks phar-
macophore features individually, combinations of the 
top-3, top-4, and top-5 CNN ranked features are used as 
pharmacophores. Each of these pharmacophores, except 
one (F1 = 0.028), yield an F1 score of 0, indicating that 
a supervised approach trained on individual features is 
not sufficient for this problem and a RL approach is more 
ideal.

From this point onward, we will refer to the RL mod-
els trained on CNN features as PharmRL_CNN and the 
model trained on ligand features as PharmRL_Ligand. 
During training on the DUDE set, we observed that the 
models tend to converge on generating pharmacophores 
with only 3 features. This is likely due to the large number 
of actives in the DUDE dataset, which drives the model 
to prioritize enhancing recall performance. Because 
these pharmacophores lack selectivity, we also evaluate 
the models when they are required to generate pharma-
cophores with at least 4 features.

Figure  7 showcases the results of the pharmacoph-
ores generated from the application of our RL models 
on the 8 test systems. Each box plot is a culmination of 

10 pharmacophores (minimum 3 and 4 features) from 
our CNN based models. The whiskers of the box plot 
are set to maximum and minimum value of the set. The 
performance of PharmRL_Ligand is also shown with 
a minimum of 3 (PharmRL_Ligand_3) and 4 features 
(PharmRL_Ligand_4). Ligand_mean is the F1 score 
obtained from the aforementioned random selection 
baseline. All the F1 scores are normalized by the max 
possible F1 score attainable from the ligand features. We 
also report other metrics for these models in Additional 
File 1: Table S1.

From Fig. 7, it is clear that for each system the models 
have generated a pharmacophore that does better than 
the average of random selection. The method consist-
ently generate at least one pharmacophore that achieves 
an enrichment factor greater than 1, indicating that it 
performs better at identifying active compounds than 
random selection from the dataset. The model trained 
and tested on ligand features finds the best achievable 
solution in 2/8 systems indicating the model is capable 
of finding the right pharmacophore from ligand features 
on certain systems. For 5/8 systems, a model that uses 
the CNN predicted features are able to provide a phar-
macophore that has better performance than the model 
trained on ligand-only features. Notably, for two of those 
systems (CP3A4 and CXCR4), the solutions provide a F1 
score that is higher than that of the max F1 score achiev-
able from the ligand-only features. This is empirical evi-
dence that the CNN is able to predict pharmacophore 
features that are relevant in the context of the given bind-
ing site and could be used for molecular screening. The 
RL algorithm, however, is necessary to assemble pharma-
cophores in an automated way. We show an example of 

Fig. 7 F1 scores divided by the max F1 score attainable from ligand features for RL models trained and tested on ligand derived features (PharmRL_
Ligand) and all CNN features (PharmRL_CNN)
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how PharmRl_Ligand selects features on the AKT1 cog-
nate ligand with associated Q-scores in Additional File 1: 
Figure S2.

RL models provide good pharmacophores for COVID 
Moonshot
To test the screening capability of the RL models on the 
SARS-CoV2 Mpro protein we used a dataset of 23 pub-
licly released non-covalently bound protein-fragment 
structures [30]. The identified pharmacophore features 
from the 23 complexes are clustered together in 3D in 
the same manner as for the CNN features. We also gen-
erate CNN based pharmacophore features in the bind-
ing sites using one of the structures. We screen against 
the COVID Moonshot dataset and label active molecules 
as those molecules that have an IC50 value < 5 μM. This 
evaluation was carried out in two retrospective phases. 
The “hit-to-lead” phase encompassed 979 molecules 
deposited before September 1st, 2020, of which 6% are 
considered actives [15]. The complete dataset, which rep-
resents the most up-to-date information, comprises 2062 
molecules, of which 38% are considered actives.

Since it is computationally intractable to enumerate 
all possible pharmacophores from the fragment fea-
tures, we sample 10,000 pharmacophores of sizes of 3, 
4, or 5 and report the max and mean F1 score obtained 
(Fragment_Max and Fragment_Mean). We compare 
this to the performance of our RL models on fragment 
features (Fig. 8a) and CNN predicted features (Fig. 8b). 
It is important to emphasize here that the F1 scores 
presented in this experiment are the actual F1 scores 
and not max-normalized F1 scores. We also report 

other metrics for these models in Additional File 1: 
Tables S2, S3.

In both cases we can see that the RL models find phar-
macophores that are close to the optimal F1 scores. This 
is exciting as it is an indication that the RL models can 
be used in tandem with pharmacophore features with 
“ground truth interactions” derived from experimentally 
determined fragment structure complexes. Furthermore, 
in some cases the RL models perform better than ran-
dom for feature selection. Perhaps more exciting is that 
the CNN + RL framework was able to identify find good 
pharmacophores even in the absence of any fragment 
data. We provide example pharmacophores and further 
analysis in Additional File 1: Section S3.

PharmRL has comparative performance to baselines 
on the LIT‑PCBA dataset
Finally, the performance of PharmRL is evaluated and 
compared to Apo2ph4 [18] on the LIT-PCBA dataset. To 
perform this comparison, we directly use the pharma-
cophores provided by the Apo2ph4 authors. For a direct 
comparison, we also use the same PDB structures that 
were used by them for all the LIT-PCBA systems. Since 
their screening procedure involves proprietary software, 
we decided to create an open source benchmark using 
their pharmacophores. Therefore, we screen their phar-
macophores on the LIT-PCBA dataset using pharmit 
with receptor exclusion turned on. The same parameters 
are used to screen our pharmacophores.

Figure  9 provides the results of the pharmacophore 
models on the LIT-PCBA systems. The legend is consist-
ent with the one defined beforehand in the “RL models 
provide at least one good solution on the DUD-E diverse 

Fig. 8 Performance of RL models on COVID screening experiments
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subset” section. Note that we report actual F1 scores rather 
than ligand-normalized F1 scores. However, we do pro-
vide the best achievable F1 score based on ligand features, 
labeled as Ligand_best. Additional metrics for pharma-
cophore performance are reported in Additional File 1: 
Table S4.

From the figure, it is evident that PharmRL_CNN pro-
vides at least one pharmacophore that achieves a better 
F1 score and enrichment factor than Apo2ph4 on 12 out 
of 18 systems. On one of the systems (ESR1_ago), a phar-
macophore even outperforms the best attainable perfor-
mance based on ligand features, further indicating that 
the CNN provides relevant features for the RL models to 
screen. The method also yields pharmacophores with an 
enrichment factor greater than 1 for all systems except 
ADRB2, demonstrating that some of the pharmacoph-
ores possess significant screening strength.

Discussion
In this work, we provide a framework to elucidate phar-
macophores on a given binding pocket using only the 
protein structure. This is particularly important when 
co-crystal structures with cognate ligands do not exist. 
To accomplish this, we employ a CNN model to predict 
the potential locations of pharmacophore features within 
the binding site. Subsequently, these predictions are fed 
into an RL algorithm that utilizes a rotational equivari-
ant neural network to generate pharmacophores that are 
subsets of these features.

The CNN model is trained using features extracted from 
co-crystal structures found in the PDBbind V. 2019 database. 
Since the prediction of pharmacophore features should rely 
solely on the local context surrounding a specific point, we 

input only the minimal local information into the CNN. The 
CNN demonstrates high accuracy in identifying the cor-
rect features at positions provided by the structures in the 
training set (Table 4). However, it needs to be retrained with 
adversarial samples to ensure that its predictions during the 
inference stage are physically plausible and relevant.

The CNN model can be considered a probe that identi-
fies pharmacophore features in the binding site. However, 
ranking these points by themselves is not sufficient to form 
a valid pharmacophore for virtual screening. This is where 
the RL models come in as they are able to select a sufficient 
subset of them for succesful screening. In principle the RL 
models can also be used in conjunction with other meth-
ods that identify pharmacophore features on the binding 
site and our open source method supports that.

As demonstrated above (Figs.  7, 8, and 9), the phar-
macophores generated using the CNN features and our 
RL model exhibit strong retrospective virtual screen-
ing performance, indicating the model’s ability to pro-
vide the correct features at relevant positions within the 
binding site. Additionally, in certain cases, as evidenced 
by the higher F1 score (systems CP3A4, and CXCR4 
Fig. 7, Esr1_ago Fig. 9), the CNN can offer features that 
are more effective than those from the cognate ligand 
structures.

A challenge in pharmacophore methods development 
is the limited availability of virtual screening data to train 
models for distinguishing effective and ineffective phar-
macophores. Additionally, the dataset may inherently 
contain biases regarding what constitutes a proficient 
pharmacophore within a binding pocket. For example, 
if a system predominantly consists of a congeneric series 
as its active molecules, relying solely on the F1 score can 

Fig. 9 Performance of pharmacophore models on LIT-PCBA targets
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lead to skewed results, where highly rewarded pharma-
cophores may exclusively match molecules from that 
specific series. Furthermore, in the context of protein-
ligand binding, a binding site has the potential to bind 
to multiple diverse types of ligands. Hence, there is no 
singular correct pharmacophore for a particular bind-
ing site. Consequently, this leads to substantial variability 
in the optimal policy for this task and thus a large vari-
ance in the policy learnt by the RL models. It is important 
to note that we do not expect great performance all the 
time even from a perfect model—the model may gener-
ate pharmacophores that match active molecules whose 
chemotypes are not present in a retrospective screening. 
Therefore, five RL models are trained to generate phar-
macophores, with the aim of mitigating the inherent vari-
ability in the problem and accounting for potential biases 
in the dataset.

Conclusions
As previously demonstrated, PharmRl consistently pro-
duce at least one effective pharmacophore for most test 
system in the dataset (refer to Figs. 7 and 8). It is impor-
tant to emphasize that while PharmRL is compared 
against randomly selected ligand features, the ligand 
features are “ground truth” interaction points, making 
the pharmacophores generated from them inherently 
enriched. Finally, we also compare to an established 
baseline (Apo2ph4) on the LIT-PCBA dataset and show 
that PharmRL exhibits comparable performance to the 
baseline.

Our method offers notable advantages as it is com-
pletely open source and it has the capacity for human 
intervention. The sequential nature of the graph-building 
framework grants users the opportunity to decide which 
features should be included or excluded in the generated 
pharmacophore. Furthermore, users can control the size 
of the generated pharmacophore, enabling the addition 
or removal of nodes as required. Users could also incor-
porate features obtained from other methods such as 
fragment experiments and ensure that they are present in 
the generated pharmacophore. These user-friendly tools 
are implemented and easily accessible in a google colabo-
ratory notebook (link) and the full open source code for 
training and inference is available at https:// github. com/ 
Risha lAgga rwal/ Pharm rl.
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