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Abstract 

Background Plastids are usually involved in photosynthesis, but the secondary loss of this function is a widespread 
phenomenon in various lineages of algae and plants. In addition to the loss of genes associated with photosynthesis, 
the plastid genomes of colorless algae are frequently reduced further. To understand the pathways of reductive evolu-
tion associated with the loss of photosynthesis, it is necessary to study a number of closely related strains. Prototheca, 
a chlorophyte genus of facultative pathogens, provides an excellent opportunity to study this process with its well-
sampled array of diverse colorless strains.

Results We have sequenced the plastid genomes of 13 Prototheca strains and reconstructed a comprehensive phy-
logeny that reveals evolutionary patterns within the genus and among its closest relatives. Our phylogenomic analysis 
revealed three independent losses of photosynthesis among the Prototheca strains and varied protein-coding gene 
content in their ptDNA. Despite this diversity, all Prototheca strains retain the same key plastid functions. These include 
processes related to gene expression, as well as crucial roles in fatty acid and cysteine biosynthesis, and membrane 
transport.

Conclusions The retention of vestigial genomes in colorless plastids is typically associated with the biosynthe-
sis of secondary metabolites. In contrast, the remarkable conservation of plastid membrane transport system 
components in the nonphotosynthetic genera Prototheca and Helicosporidium provides an additional constraint 
against the loss of ptDNA in this lineage. Furthermore, these genes can potentially serve as targets for therapeutic 
intervention, indicating their importance beyond the evolutionary context.
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Background
Plastids are eukaryotic organelles derived from cyanobac-
teria, whose most widely recognized and deeply studied 
function is photosynthesis [1, 2]. However, even though 
carrying the photosynthetic apparatus is their distinc-
tive feature, a variety of biochemical pathways have been 
inherited by the extant plastids from their cyanobacterial 
ancestor, and their functions, such as heme, fatty acid, or 
amino acid biosynthesis, remain crucial constituents of 
the hosts’ metabolism [3–5]. As a result, the rather com-
mon loss of photosynthesis does not necessarily lead to 
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the disappearance of the organelle—on the contrary, the 
so-called colorless plastids can be found in almost all 
known plastid-bearing lineages [4, 6], with only a handful 
of known cases of photosynthesis loss leading to a radi-
cally different outcome [7, 8].

All photosynthetic plastids and most non-photo-
synthetic ones carry their own genomes (plastomes, 
ptDNA), which are vestigial forms of the genome of the 
ancestral cyanobacteria. During the course of evolution, 
a vast majority of cyanobacterial genes have been lost or 
transferred to the nuclear genome of the host. This trans-
fer, however, is not random, and certain genes, such as 
those encoding photosystem complex components, tend 
to be retained in the plastid genomes of all known plas-
tid-bearing lineages [9]. With certain exceptions, even 
the most functionally reduced plastids retain genomes, 
whose coding contents are usually limited to up to several 
metabolically relevant protein-coding genes, acting as a 
constraint against complete genome loss, and a minimal 
transcription and translation apparatus [10–14]. Despite 
their small size and modest genetic repertoire, the 
genomes of colorless plastids can be important sources of 
insight into the evolutionary history and lifestyle of their 
host, as well as, in case of plastid-bearing parasites, even 
their vulnerabilities [3, 11, 15, 16].

To understand the plastid and plastid genome (plas-
tome) evolution in secondarily non-photosynthetic 
organisms, comparative genomic and transcriptomic 
analyses with their photosynthetic relatives are the most 
common modus operandi. This applies both to lineages 
where photosynthesis losses have repeatedly occurred 
late in their evolution, such as orchids [17], dinoflag-
ellates [8, 18] or the diatom genus Nitzschia [19], and 
those whose shift toward heterotrophy preceded their 
major radiation, such as apicomplexans [15, 20]. Close 
relatedness between organisms exhibiting vastly differ-
ent lifestyles is often a hallmark of complex and captivat-
ing evolutionary paths, and a perfect example of that can 
be found among the green algal order Chlorellales. The 
relatives of the model green microalga Chlorella include 
a photosynthetic genus Auxenochlorella, as well as two 
secondarily non-photosynthetic genera – Helicosporid-
ium, which are highly specialized gut parasites of insects 
[21–24], and Prototheca, which are predominantly free-
living opportunistic pathogens of diverse vertebrates, 
including humans [25–28]. The evolutionary history of 
these organisms, especially their transitions between 
photosynthetic, parasitic, and free-living heterotrophic 
lifestyles, remains mysterious even with the availability of 
several genomic datasets [26, 29–31].

The aforementioned assemblage of Auxenochlorella, 
Helicosporidium, and Prototheca, collectively referred 
to as the AHP clade [32], constitutes a rather unique 

model for studying evolutionary transitions related to 
plastid reduction. In a recent work, it has been shown 
that photosynthesis was most likely lost several times 
independently in that clade [32], providing an excellent 
model group to study parallels in the reductive evolu-
tion accompanying the loss of photosynthesis in close 
relatives. This topic is particularly interesting because 
non-photosynthetic primary plastids often tend to adopt 
extreme forms, as demonstrated by cases of ptDNA infla-
tion beyond the size observed in their photosynthetic 
relatives in certain green algae, such as Leontynka pallida 
or Polytoma uvella [33, 34], as well as complete ptDNA 
loss in other chlorophytes (Polytomella parva) [14] and 
even land plants (Rafflesia sp.) [35]. On the other hand, 
genomes of colorless plastids that are reduced in size and 
function, while retaining a rudimentary set of genes asso-
ciated with metabolite synthesis and housekeeping func-
tions, are more typical for the substantially better-studied 
secondary plastids, found e.g. in diatoms or apicomplex-
ans [3, 36].

What is more, Prototheca and Helicosporidium are 
also among the extremely rare primary plastid-bearing 
pathogens, which makes the convergently similar form 
of their ptDNA to apicoplast genomes even more inter-
esting. However, although Prototheca infections have 
been repeatedly observed in humans, dogs, and cows, 
its occurrence in a vast variety of other vertebrate hosts 
has been documented almost entirely in single case stud-
ies [27]; the transmission, infectivity, and mechanisms of 
pathogen-host interactions therefore remain unknown 
[37]. As demonstrated by the past studies of Apicom-
plexa, understanding the functions of vestigial plastids 
in parasites can not only provide key insights into their 
metabolic dependence on the host [38] but also uncover 
potential targets for therapeutical agents [39].

Results and discussion
Plastid‑based phylogeny of the genus Prototheca
Plastid genome characteristics of Prototheca spp. are 
shown in Table  1. The plastid genome-based phyloge-
netic tree of Prototheca spp. and their relatives is shown 
in Fig. 1. Despite the overall high support for the recon-
structed phylogeny, both estimated by Bayesian posterior 
probability and bootstrap support values, we observed 
one topological incongruency between the Bayesian and 
maximum likelihood reconstructions. In the ML recon-
struction, P. lentecrescens branches off as a sister to P. 
wickerhamii, while P. fontanea branches off as sister to P. 
lentecrescens + P. wickerhamii clade. In the Bayesian tree, 
however, P. lentecrescens and P. fontanea form a clade 
of their own, branching off as sister to P. wickerhamii. 
The gene content of the plastid genomes of the Proto-
theca strains in question does not favor any of these two 
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Table 1 Plastid genome characteristics of Prototheca spp

Taxa whose plastid genomes were first sequenced in this study are distinguished in bold

Organism ptDNA size (bp) Protein‑coding genes Accession no

Prototheca xanthoriae SAG 263–11 55,636 40 KJ001761

Prototheca cutis ATCC PRA-338 51,673 40 NC037480

Prototheca wickerhamii DBVPG 47,997 35 NC054192

Prototheca stagnora ATCC 16528 48,253 29 NC037479

Prototheca bovis SAG 2021 28,638 19 MF197536

Prototheca ciferrii SAG 2063 28,698 19 MF197535

Prototheca paracutis YMTW3‑1 51,694 40 PP291735

Prototheca miyajii IFM 53848 53,237 40 PP291733

Prototheca lentecrescens PK1 53,163 40 PP291732

Prototheca fontanea PK2 46,196 34 PP291731

Prototheca wickerhamii PK9 47,600 35 PP291739

Prototheca tumulicola JCM 31123 49,137 26 PP291737

Prototheca blaschkeae SAG 2064 46,294 30 PP291728

Prototheca zopfii ATCC 16533 28,349 19 PP291740

Prototheca cerasi JCM 9400 28,412 19 PP291729

Prototheca pringsheimii SAG 263–3 28,370 19 PP291736

Prototheca vistulensis W3 28,516 19 PP291738

Prototheca cookei ATCC 16527 28,282 19 PP291730

Prototheca moriformis SAG 263–2 38,525 22 PP291734

Fig. 1 Phylogenomic analysis of the Prototheca and other Chlorellales with mapped gene losses on the respective branches. Tree shown 
is a maximum likelihood (ML) phylogeny of 40 marker genes from plastid genomes. The Bayesian inference phylogeny was congruent with ML 
with the exception of the relationships between P. fontanea, P. lentecrescens, and P. wickerhamii, and the incongruence is presented as an alternate 
topology. The phylogeny is based on a concatenated marker gene alignment of 24,003 unambiguously aligned sites under the model 
LG + F + I + G4. Black dots indicate maximal support for a particular node. When not maximal, only a posteriori > 0.5 and bootstrap support 
values > 50% are shown. Strain names in bold denote ptDNA sequences obtained in this study. NCBI GenBank accession numbers for sequences 
publicly available prior to this study are provided in brackets. The percentage of the total number of 40 plastid-encoded genes used 
in the construction of the data matrix, present in each of the taxa included, is shown on the horizontal bar plot on the left
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topologies, as they both imply two independent losses 
of the same gene set (the six-gene atp family) in closely 
related lineages. Therefore, with no scenario being more 
evolutionarily plausible than the other, we present the 
relationship of P. wickerhamii, P. fontanea, and P. len-
tecrescens as trichotomous in Fig. 2.

Regardless of the incongruency described above, both 
methods resolve the three main Prototheca clades iden-
tically, with the first clade (“Prototheca clade A”, rep-
resented solely by P. xanthoriae strain SAG 263–11, 
formerly classified as P. wickerhamii [25, 31]) branching 
off as sister to Auxenochlorella protothecoides, the sec-
ond clade (encompassing P. cutis, P. paracutis, P. miyajii, 
P. wickerhamii, P. fontanea, and P. lentecrescens; further 
referred to as “Prototheca clade B”) branching as sister 
to the A. protothecoides + P. xanthoriae clade, and the 
third (encompassing all remaining species: P. tumulicola, 
P. blaschkeae, P. stagnora, P. moriformis, P. bovis, P. zop-
fii, P. cerasi, P. ciferrii, P. pringsheimii, P. vistulensis, and 
P. cookei; further referred to as “Prototheca clade C”) 
branching off as sister to Helicosporidium sp. As the last 
common ancestor of all Prototheca spp. is also the ances-
tor of Helicosporidium sp. and Auxenochlorella protothe-
coides, the genus Prototheca is therefore, by definition, 
polyphyletic, as suggested in the previous nuclear and 
mitochondrial gene-based phylogenies [27, 28].

Furthermore, it is clear from the plastid genome-
based phylogeny presented above that all three Proto-
theca clades originate from ancestors which lost their 
photosynthetic capabilities independently. This result 
is also corroborated by an additional phylogeny of 

the AHP clade we reconstructed, based on 92 genes 
encoded in the nuclear genomes (Additional File 1: 
Fig. S1) suggesting at least three losses of photosyn-
thetis in this clade. The nuclear gene-based tree was 
resolved with slightly different topology: the Proto-
theca clade B was split into two clades, and a subclade 
of Prototheca clade C, formed by P. blaschkeae, P. stag-
nora and P. tumulicola was split into three independent 
branches. Additionally, the branching pattern within 
clades was not congruent across all taxa. Nonethe-
less, this topology still supports the polyphyly of the 
genus Prototheca with respect to Auxenochlorella and 
Helicosporidium, with the sister relationships of P. xan-
thoriae and A. protothecoides, as well as Helicosporid-
ium sp. and Prototheca clade C. Hence, the disparities 
between the observed branching patterns of nuclear 
and plastid phylogenies do not influence our interpre-
tation of the order and numbers of plastid-encoded 
gene losses. Conflicting phylogenetic signals between 
plastid-encoded and nuclear-encoded genes have been 
reported in different plant groups [40–43]. The causes 
of these conflicts are often unclear, underlining the 
importance of analyzing both data sets. The differences 
in Prototheca tree topologies based on plastid and 
nuclear genes should therefore be further investigated 
to resolve the species tree within this group. However, 
to confirm these incongruences, and to better under-
stand the differences in phylogenetic signals between 
plastid and nuclear genomes in Prototheca, a more 
comprehensive nuclear gene dataset based on complete 
nuclear genomes is required.

Fig. 2 Distribution of various plastid genome functions across Prototheca spp. Note: the schematic phylogenetic tree on the left demonstrates 
solely the branching order of Prototheca clades; branch lengths are not to scale, and photosynthetic taxa have been removed for clarity
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Still, due to vast discrepancies in sampling across the 
diversity of Prototheca spp. between the aforementioned 
phylogenies and the current work, we believe them to be 
impossible to compare in detail—for instance, the most 
recent cytb-based reconstruction included seventeen P. 
ciferrii sequences, while the species P. paracutis or P. len-
tecrescens have not been included at all, simply because 
they have not been described at the time [27, 44, 45].

Independent losses of the photosynthetic apparatus 
shaped divergent paths of Prototheca plastid genomes
Interestingly, it is noticeable that the plastid genome con-
tents differ substantially between the three Prototheca 
clades. While the ptDNA of P. xanthoriae (clade A) is 
both the largest (over 55.6 kbp) and ex aequo most gene-
rich (40 protein-coding genes) of all Prototheca spp., the 
size and gene contents across the closely related Proto-
theca clade B are generally comparable, ranging from 
approximately 48.0 kbp and 35 protein-coding genes in 
P. wickerhamii to approximately 53.2 kbp and 40 protein-
coding genes in P. lentecrescens. In contrast, the plas-
tid genomes of the Prototheca clade C carry no more 
than 26 protein-coding genes, with many species (e.g., 
P. zopfii, P. bovis) having only 19. Moreover, the dimin-
ished gene content of the ptDNA in Prototheca clade C 
is not entirely proportional to their length –  the plastid 
genomes of P. tumulicola and P. stagnora exceed 48.0 kbp 
in size, which would be within the range of Prototheca 
clade B, but their substantially smaller gene content indi-
cates the elevated proportion of the non-coding regions 
in their plastid genomes. What is more, the ptDNA of 
P. cookei is below 28.3 kbp in size, which makes it, along 
with its closest relatives—P. zopfii, P. ciferrii, P. bovis, P. 
pringsheimii, P. vistulensis, and P. cerasi, all with ptDNA 
length below 29 kbp – the carrier of possibly the most 
reduced plastid genome among unicellular eukaryotes, 
with only a few species of mycoheterotrophic and para-
sitic plants reaching smaller ptDNA size and gene con-
tents [12].

Furthermore, the reduction of coding contents of Pro-
totheca plastomes is definitely not a symptom of their 
random decay in time, but a manifestation of diver-
gence of function, as indicated by the retention or losses 
of complete gene operons or families, such as atp and 
rpo. Although the documentation for the loss of these 
two families in non-photosynthetic plastids is rather 
abundant, pointing toward the possibility of functional 
compensation for the missing rpo by nuclear RNA poly-
merases [46–49], the retention of ATP synthase subu-
nits in P. xanthoriae, P. cutis, P. paracutis, P. miyajii, and 
P. lentecrescens indicates their capability for generat-
ing ATP or, alternatively, proton motor force across the 
plastid membrane. Although the ATP synthase subunits 

have been identified among the ptDNA contents of non-
photosynthetic cryptophytes [50], diatoms [51], and even 
land plants [52], their role in absence of photosynthe-
sis still awaits full explanation. Still, the presence of atp 
genes suggests that the plastids of the aforementioned 
five representatives of Prototheca carry out certain cur-
rently inscrutable metabolic processes absent from all the 
others. It might additionally be worth noting that five out 
of six plastid-encoded atp genes exhibit a significantly 
increased rate of evolution (expressed as dN/dS values; 
see Additional File 1: Table S2) in Prototheca compared 
to the photosynthetic Chlorellales, with the sole excep-
tion being the smallest subunit atpH, encoding only an 
approximately 80 amino acid long protein.

Bearing this functional diversity in mind, it is tempting 
to hypothesize whether the independent losses of photo-
synthesis in the ancestors of the three Prototheca clades 
might have been the cornerstone behind their diver-
gence. A factor that certainly has to be taken into account 
is time—with the plastid genome of P. xanthoriae lacking 
only the photosynthetic apparatus (and therefore display-
ing rather “basic” reduction), compared to the phototro-
phic Chlorellales, and the ptDNA of many Prototheca 
clade C representatives being reduced to just a handful 
of genes (and therefore displaying “advanced” reduction), 
one could assume that the loss of photosynthesis in the 
clade C’s ancestor occurred earlier than in those of clade 
B and P. xanthoriae. Such a hypothesis, however, might 
be quite difficult to prove, as calibration of the evolution-
ary timeline would require insight into the fossil record. 
This, on the other hand, would be rather challenging not 
only due to the scarcity of adequately conserved fossilized 
remains of non-skeleton-forming unicellular eukaryotes, 
but also because of the near-identical morphology of all 
extant Prototheca species, which would make the phylo-
genetic placement of an extinct one nearly impossible.

Membrane transport system components are 
the previously overlooked constraints against genome loss 
in Prototheca plastids
Despite the differences outlined above, plastid genomes 
of Prototheca spp. (and Helicosporidium sp.) also share a 
vast array of similarities—all examined species retained a 
common core set of 19 genes, covering the entire plastid 
gene repertoire of certain clade C representatives, such 
as the aforementioned P. cookei. This includes 15 genes 
involved in transcription and translation, but also a fatty 
acid synthesis-associated gene accD, and three mem-
brane transport machinery components: ycf1, encoding 
the largest subunit of the protein translocation system 
TIC (TIC214), cysT, involved in sulfate ion import across 
the plastid membrane, and ftsH – a putative membrane 
translocation regulator (Fig. 2). Presence of the ycf1 gene 
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in the ptDNA of all studied Prototheca spp. is particu-
larly interesting, as it has been documented to be quite 
frequently lost in various lineages of land plants (includ-
ing photosynthetic ones), in addition to being a uniquely 
chlorophyte plastid-encoded gene, not found in rho-
dophytes, glaucophytes or any lineage bearing complex 
plastids [53]. Furthermore, identification of the ycf1 gene 
may be challenging due to its fast-paced evolution [54], 
which is likely the reason why the biological role of its 
product in protein translocation across the inner enve-
lope of plastids was only described a decade ago [53].

The available body of evidence suggests that the driving 
force behind genome retention in non-photosynthetic 
plastids is almost invariably the presence of indispen-
sable plastid-encoded secondary metabolite synthesis 
pathway components [4, 11], with the only prominent 
exception to our knowledge being the dinoflagellate 
tRNA-fMet gene, encoded with the plastid genome, but 
directed to the mitochondria [55]. In contrast, the role of 
ftsH and ycf1 is evidently the maintenance of transport 
mechanisms of a plastid compartment that serves almost 
entirely nucleus-encoded biosynthetic pathways, such as 
amino acid, heme, or fatty acid synthesis, demonstrated 
in past studies to be carried out in  the vestigial plastids 
of  Helicosporidium strain AT-2000 [21] and Prototheca 
xanthoriae strain SAG263-11 [25], and now found to 
have only two plastid-encoded components (accD and 
cysT) in total.

This work is not the first report of ycf1 and ftsH reten-
tion in the genomes of non-photosynthetic plastids; both 
were reported in the previously studied plastid genomes 
of Helicosporidium and certain Prototheca spp., as well 
as the distantly related non-photosynthetic, although 
free-living chlorophyte Polytoma uvella [22, 32, 33, 56]. 
However, the potentially key role of ycf1 may have been 
overlooked in the past, as the first reports of its retention 
in non-photosynthetic plastids [22] predate the discov-
ery of this gene’s biological role [53, 57]—hence its name 
still suggests it to be a gene of unknown function. What 
is more, the bulk of studies on the roles of non-photosyn-
thetic plastids is focused on secondary plastid-bearing 
lineages, such as apicomplexans, which do not possess a 
plastid-encoded ycf1 [6].

The role of the plastid-encoded ftsH gene is substan-
tially more complicated. The FtsH metalloprotease and 
its evolutionary relatives have been found to be involved 
a multitude of cellular functions, including chloroplast 
biogenesis [58] and turnover of thylakoid membrane-
associated proteins [59] in photosynthetic plants, as 
well as cell division in prokaryotes, organelle division 
in Cyanidioschyzon merolae [60], and plastid-directed 
protein translocation in association with the TIC/TOC 
complex in both green and red primary plastids [61–63]. 

The relationship between the FtsH-like proteins and the 
TIC/TOC translocons is particularly interesting, as the 
hetero-hexameric complex of six different FtsH paralogs 
has been postulated to act as the ATPase motor facili-
tating the protein translocation [61, 64]. The FtsH-TIC/
TOC interaction has been supported by evidence com-
ing from the immunoprecipitation of TIC20 and FtsH in 
Cyanidioschyzon merolae [65], as well as ftsH knockout 
studies and a pulldown proteomic study of the TIC/TOC 
complex of Chlamydomonas reinhardtii [63, 66]. Fur-
thermore, the sequences of ftsH and ycf1 have also been 
demonstrated to be coevolving across a variety of green 
plastid-bearing taxa [61]. Thus, considering that Proto-
theca spp. plastids do not possess thylakoids [67] and do 
not carry the genes for crucial thylakoid-associated pro-
teins, such as photosystem components, we are inclined 
to believe that it is the TIC/TOC-mediated protein trans-
location that remains the key role of FtsH in Prototheca 
and its relatives.

Nonetheless, the combination of non-transcription and 
translation-related genes retained in the plastid genomes 
of Prototheca (i.e., accD, cysT, ftsH, minD, and ycf1) is as 
interesting as it is unique among the nonphotosynthetic 
plastid-bearing organisms. As mentioned before, ycf1 is 
not found in the genomes of any secondary plastids or 
red algal plastids. On the other hand, nonphotosynthetic 
green algae and land plants carrying plastid-encoded 
ycf1, i.e. the chlamydomonadaleans Leontynka pallida 
and Polytoma uvella, the liverwort Aneura mirabilis, 
and the orchid Neottia nidus-avis, are all missing minD, 
with the former two additionally missing accD, and the 
latter two missing ftsH [33, 34, 68, 69]. To the best of 
our knowledge, outside of the AHP clade, the aforemen-
tioned set of five genes is exclusively found in the plastid 
genomes of photosynthetic trebouxiophytes. Given that 
the genes missing from the ptDNA of various lineages are 
not always lost, but frequently undergo differential trans-
fer to their respective hosts’ nuclei, this does not imply 
that other organisms cannot utilize the products of these 
genes in their plastid metabolism. To verify whether this 
is the case for the five genes mentioned above, a broad-
scale transcriptomic survey of plastid-bearing eukaryotes 
is necessary, as the available data enabled us to identify 
the mitochondria-targeted copy of ftsH encoded in the 
nucleus in all Prototheca spp., but not the nuclear coun-
terparts of any of the remaining four plastid-encoded 
genes we investigated.

As a side note, we are not convinced that the retention 
of these particular genes in the plastid genomes of Pro-
totheca, instead of them undergoing endosymbiotic gene 
transfer to the nucleus, is of any adaptational merit per 
se. Instead, we believe them to simply follow the same 
rules as all genes of endosymbiotic origin, i.e., that their 
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genomic location is the resultant of a wide variety of 
evolutionary forces acting either toward retention in the 
organelle (e.g., to promote faster response in gene expres-
sion in response to redox shifts, as outlined in the CoRR 
hypothesis; see [9] and [70]) or transfer to the nucleus 
(e.g., to limit the energetic expense of maintaining a 
multi-copy organellar genome; see [71], or to restore the 
capability for recombination of genes originating from 
an asexually-replicating organelle; see [72]), with an 
immeasurable impact of random occurrences. Hence, by 
referring to certain genes as “constraints” against organel-
lar genome loss, we do not imply them to be evolutionary 
constraints of global concern, but rather the constraints 
for a particular lineage in the present time frame, which 
is the product of its very unique evolutionary past.

Unsolved mysteries: differential loss of the plastid‑encoded 
ATP synthase and accelerated rate of evolution 
of miscellaneous genes
Moreover, the plastid genome contents that are not 
shared by all Prototheca spp. remain quite mysteri-
ous, especially the ATP synthase operon. Although its 
inconsistent presence in this genus has been pointed out 
before [32], the broader sampling of our study made it 
possible to observe that the entire atp gene set was dif-
ferentially lost among Prototheca clade B, which has also 
been documented to occur in certain land plants, such 
as Orobanchaceae [47, 73], but in contrast with its con-
sistent retention or loss in the descendants of all photo-
synthesis loss events in secondary plastids [32, 51]. In 
non-photosynthetic plastids, the proposed role of the 
ATP synthase complex is the hydrolysis of ATP to gen-
erate proton motive force across the inner plastid mem-
brane, which is utilized for protein translocation by the 
twin-arginine translocase (Tat) system [51].

However, while the Tat system subunits have been 
identified in other non-photosynthetic lineages that 
retain ptDNA-encoded ATP synthase complex, e.g. Leon-
tynka pallida (Chlorophyta) or Cryptomonas parame-
cium (Cryptophyta), the entire system seems to be absent 
both in plastid and nuclear genomes of all Prototheca 
investigated in this paper and previous works [32, 34, 50]. 
Therefore, the ATP synthase presence in some of the Pro-
totheca spp. could be explained by the necessity to utilize 
ATP by the TIC/TOC translocon-associated FtsH motor 
mentioned earlier, or alternatively, by the existence of an 
unknown protein translocation system that relies on the 
proton gradient (under the assumption that the ATP syn-
thase might be working in reverse, as mentioned earlier), 
or even a completely different, Prototheca-specific role of 
this complex in plastids, as proposed by Suzuki et al. [32]. 
Nonetheless, it is almost certain that there is a variability 

in plastid functions among Prototheca that cannot be 
fully explained by their plastome-encoded components.

Furthermore, the analysis of the rates of evolution 
of ptDNA-encoded genes between Prototheca clades 
yielded rather unexpected results (Additional File 1: 
Table  S3). Among 25 analyzed genes, 7 (ftsH, rpl16/19, 
rps8/14/19, and tufA) displayed significantly increased 
dN/dS values in Prototheca clade C, compared to clade 
B; 17 others (accD, rpl2/5/14/20/36, rpoA/B/C1/C2, 
rps3/4/7/11/12, tilS, and ycf1) exhibited no difference 
between clades, but most surprisingly, one gene – cysT 
– has apparently undergone accelerated evolution in the 
Prototheca clade B, compared to clade C. This might be 
indicative of diversified evolutionary pressure toward dif-
ferent gene (and protein) sequence conservation between 
the Prototheca clades, with e.g. ftsH and tufA undergoing 
more constrained evolution in the Prototheca clade B, 
and cysT being more conserved in the clade C. It is also 
noteworthy that ycf1 exhibited the overall highest rate 
of non-synonymous substitution of all plastid-encoded 
genes of Prototheca spp., corroborating the past observa-
tions on its fast-paced evolution [54].

Interestingly, despite the observed accelerated evolu-
tionary rate and gene losses in the ptDNA of different 
Prototheca lineages, we have not identified a single symp-
tom of pseudogenization, i.e., disruption of a reading 
frame in a discernible protein-coding gene. This stands 
in contrast with a wide array of past studies [73–75], in 
which pseudogenes have been frequently identified in 
non-photosynthetic primary plastid genomes, especially 
those of land plants, and have been considered the hall-
mark intermediate stages in the gradual reductive evolu-
tion of ptDNA.

Conclusions
In this study, we obtained 13 new complete plastid 
genome sequences of Prototheca spp.—a paraphyletic 
assemblage of secondarily non-photosynthetic repre-
sentatives of Chlorellales. We have demonstrated that 
despite having forfeited the photosynthetic apparatus 
three times independently and bearing highly variable 
coding contents, the plastid genomes of all Prototheca 
share the same key functions, which, apart from their 
own gene expression-related processes, include fatty 
acid and cysteine biosynthesis, as well as protein trans-
location across the organellar membrane. Additionally, 
our study is the first attempt to identify the patterns 
of differential reduction of ptDNA contents among 
the subclades of Prototheca, and to estimate the rate 
of evolution of the genes retained within the plastid 
genomes of different clades of Prototheca spp., which 
can be used as an indicator of the strength of purify-
ing selection acting upon these genes. We observed 
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certain evolutionary parallels in plastid genome evolu-
tion between our research subjects and various plastid-
bearing lineages investigated in past works. However, 
the functional combination of the core ptDNA-encoded 
protein complement of Prototheca spp. including mem-
brane translocation is rather unique.

Components of the pathways involved in second-
ary metabolite biosynthesis have been demonstrated in 
a variety of past studies to be the crucial factor behind 
the retention of vestigial genomes in colorless plastids 
of many eukaryotic lineages. The plastid membrane 
transport systems being an additional constraint against 
ptDNA loss in Prototheca and  Helicosporidium makes 
these peculiar chlorophytes a prominent exception from 
the general paradigm, even considering that their reten-
tion in the organellar genome, as opposed to a possible 
transfer to the nucleus, is likely not adaptational. Still, the 
retention of genes unique to plastids in these opportun-
istic pathogens could be exploited in a clinical setting, as 
therapeutical agents targeting plastid transport machin-
ery, such as the product of the gene ycf1, would likely 
pose minimal risk for the patients.

Nonetheless, we are convinced that the facultatively 
pathogenic inclinations of Prototheca have not been the 
main driving force between the repeated loss of photo-
synthesis. Instead, it seems more plausible that forfeit-
ing photosynthesis accompanied the transition of these 
microorganisms to low-light habitats rich in total organic 
carbon, such as river sediments, demonstrated in a recent 
environmental survey [44] to be their important reservoir 
in nature. Still, as the Prototheca spp. seem to possess no 
obvious novel adaptations both to the benthic and the 
pathogenic lifestyle, it would be reasonable to perceive 
these organisms as ecological opportunists, losing exces-
sive genetic and biochemical burdens over the course of 
evolution to limit the energetic expenses of survival.

Further genomic and transcriptomic studies are nec-
essary to explain the diversity of ptDNA contents in 
Prototheca spp. and its possible correlation with diver-
sified plastid metabolism. After all, despite its immense 
qualitative importance, the quantitative contribution of 
the plastid genome to the metabolism of the organelle 
is rather small, while the bulk of the organellar pro-
teome, even if its evolutionary origin is endosymbiotic, 
comes from the genes presently encoded within the host 
nucleus. We believe that the key to unraveling the mys-
tery behind the divergence among Prototheca may be 
understanding the role of the retained ATP synthase in 
these organisms’ plastids, and that the Auxenochlorella/
Helicosporidium/Prototheca assemblage could become a 
promising model for future studies on divergent evolu-
tion of the endosymbiotic organelles, including, but not 
limited to the primary plastids.

Methods
Cultivation, DNA isolation, and sequencing
Nine strains of Prototheca spp. have been obtained 
from public culture collections indicated by their names 
where applicable: SAG—Culture Collection of Algae 
(Sammlung von Algenkulturen), University of Göttin-
gen, Germany; JCM (+ strain YMTW3-1)—Japan Collec-
tion of Microorganisms, RIKEN BioResource Research 
Center, Tsukuba, Japan; ATCC—American Type Culture 
Collection, Manassas, VA, USA; IFM—Research Center 
for Pathogenic Fungi and Microbial Toxicoses (formerly 
Institute of Food Microbiology), Chiba University, Japan. 
Additionally, four Prototheca strains (PK1, PK2, PK9, 
and W3) were obtained from a private collection of 
the Department of Medical Microbiology (Institute of 
Microbiology, Faculty of Biology, University of Warsaw, 
Poland). All strains were cultured on Sabouraud Dextrose 
Agar (SDA) plates (Becton Dickinson, USA) and their 
DNA isolation was performed according to the optimized 
protocol based on homogenization with glass beads, out-
lined in [76]. The cell pellet from culture medium was 
suspended in 750 µL of extraction buffer (2% Triton-
X100, 1% SDS, 100 mM NaCl, 10 mM Tris–HCl pH 8.0, 
1  mM EDTA) and cell lysis was achieved by pulveriza-
tion with 0.4–0.6  mm diameter glass beads (Sartorius 
AG, Göttingen, Germany), in a 1:1 ratio, in a tissue lyser 
(TissueLyser II; Qiagen, Hilden, Germany) at 20  Hz for 
15 min. The disrupted sample was then transferred into a 
5-mL microcentrifuge tube. The glass beads were washed 
4 times with 500 µL of extraction buffer, and the washes 
were pooled. Cell lysis was continued with the addition 
of proteinase K (160 µg/mL) and incubation at 56 °C for 
1  h. In the next step, 10% CTAB/0.5  M NaCl solution 
was added, followed by 10  min of incubation at 65  °C. 
The lysate was further extracted with an equal volume of 
Phe/Chl/IAA (25:24:1) and DNA was precipitated with 
0.7 volume of isopropanol, followed by centrifugation 
(20 min, 14,000 rpm, RT), and washing with 1 mL of 70% 
ethanol. The DNA was air-dried and resuspended in 200 
µL of TE buffer with RNAse A (50 µg/ml) and incubated 
at 37 °C for 30 min. DNA was finally centrifuged (5 min, 
14,000 rpm, RT), and the clear supernatant was collected 
in a new tube. All DNA samples were sequenced using 
the Illumina MiSeq PE300 platform, with a 600-cycle 
chemistry kit.

Quality control and genome assembly
Quality control of the obtained reads was carried out 
using FastQC v0.11.5 [77]. Adapter removal and trim-
ming were performed using Trimmomatic v0.32 [78] 
using default parameters. The initial assembly was car-
ried out using SPAdes v3.11.1 [79], and the outputs were 
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analyzed to assess their general quality using Quast v5.0.2 
[80]. The detection of potential contamination was done 
using Blobtools v1.1 [81].

Among the assembled contigs, plastid genome-derived 
sequences were identified using Tiara v1.01 [82], supple-
mented by BLASTn searches [83] using publicly available 
ptDNA sequences of Prototheca spp. as queries. The larg-
est identified plastid genome fragments in each assem-
bly were extracted and subsequently used as seeds for 
the final ptDNA assembly using NOVOPlasty v4.3 [84]. 
Circularized plastid genomes were recovered in all 13 
datasets.

Plastid genome annotation and visualization
Automatic annotation of Prototheca plastid genomes was 
carried out using Geneious Prime v2022.1.1 software 
(https:// www. genei ous. com) using Live Annotate & Pre-
dict toolkit (Find ORFs and Annotate From… features), 
utilizing a manually constructed database of published 
plastid genomes of Prototheca spp., Chlorella spp., Aux-
enochlorella spp., and Parachlorella kessleri. Identities 
of all protein-coding gene sequences were confirmed 
by alignment with the NCBI non-redundant protein 
database (NCBI-nr) via BLASTX algorithm [83], with 
the PFAM 35.0 protein families’ database (pfam.xfam.
org) using the browser-accessible internal HMM search 
feature [85], and using the HHpred browser-accessible 
toolkit (toolkit.tuebingen.mpg.de; [86]). Additionally, 
genome assemblies were surveyed using a bi-directional 
BLAST search for nuclear copies of certain plastid-
encoded genes. Plastid genome maps were generated 
using the OGDraw v1.3.1 online tool [87].

Plastid genome‑based phylogenomic analysis
Orthologs of 79 protein-coding genes were extracted 
from the 40 annotated ptDNA sequences of Proto-
theca and their closest relatives, including the 13 Proto-
theca strains analyzed in this work, six published plastid 
genomes of Prototheca (see Table 1), 11 published plastid 
genomes of Chlorella, two published plastid genomes of 
Auxenochlorella, two published plastid genomes of Pedi-
nomonas, and the published plastid genomes of singular 
representatives of Helicosporidium sp., Marsupiomonas 
sp., Dicloster acuatus, Marvania geminata, Parachlorella 
kessleri, and Pseudochloris wilhelmii (see Additional File 
1: Table  S1). All coding sequences were translated into 
amino acid sequences, aligned using the L-INS-I method 
in MAFFT v7.310 [88], trimmed via trimAl v1.4 [89], and 
concatenated using catsequences script (https:// github. 
com/ Chris Creev ey/ catse quenc es) to produce data matrix 
with a total length of 33,713 amino acids. Genes that 
were not found in any of the analyzed Prototheca spe-
cies (i.e., encoding photosynthesis-related proteins) were 

removed, resulting in a final matrix containing 40 genes 
with a total length of 24,003 amino acids. The percentage 
of genes missing from the final matrix for each taxon is 
depicted in Fig. 1.

The concatenated alignment was used as the input 
for phylogenetic analyses via  the maximum likelihood 
method implemented in IQ-TREE v2.0.6 software [90], 
and via the Bayesian inference method implemented 
in MrBayes v3.2.6 [91]. Maximum likelihood phylog-
eny reconstruction used a partitioned matrix with 
LG + F + I + G4 substitution model, which was deter-
mined empirically as best-fitting via -m TEST followed 
by -mset LG + G4,LG + C10,LG + C20,LG + C30,LG + C40
,LG + C50,LG + C60 parameter, and 1000 non-parametric 
bootstrap replicates. The Bayesian reconstruction used 
a non-partitioned dataset with a preset sequence evolu-
tion model (invgamma), with 1,000,000 generations (incl. 
250,000 generations burn-in), after which convergence of 
the four Markov chains was achieved at average standard 
deviation of split frequencies of 0.002049. Both meth-
ods yielded mostly congruent tree topology, with local 
divergence in topologies described in further detail in the 
“Results and discussion” section.

Nuclear phylogenomic analysis
Orthologs of 255 nuclear genome-encoded genes, con-
stituting the eukaryota_odb10 database, were identi-
fied in the genomic assemblies of Prototheca, Chlorella, 
Auxenochlorella, and Helicosporidium spp. using BUSCO 
v5.7.1 [92]. Single-copy genes were extracted and aligned 
using the L-INS-I method in MAFFT v7.310 [88]. 92 
alignments containing sequences from at least 75% of 
the analyzed Prototheca spp. were concatenated using 
the catsequences script (https:// github. com/ Chris Creev 
ey/ catse quenc es) to produce a raw data matrix with a 
total length of 55,187 amino acids. The raw dataset was 
subsequently trimmed via trimAl v1.4 [89] at gap thresh-
old (-gt) 0.8 to produce the final data matrix with a total 
length of 19,739 amino acids. The concatenated align-
ment was used as the input for phylogenetic analyses via 
maximum likelihood method implemented in IQ-TREE 
v2.0.6 software [90] with LG + F + I + G4 substitution 
model, which was determined empirically as best-fitting 
via -mset LG + G4,LG + C10,LG + C20,LG + C30,LG + C40
,LG + C50,LG + C60 parameter, and 1000 non-parametric 
bootstrap replicates.

Estimation of evolutionary rate
Codon alignments of 25 plastid protein-coding genes 
were prepared using PAL2NAL v14 software [93]. Rates 
of synonymous and non-synonymous substitutions (dN/
dS) for all gene alignments were  calculated using the 
CodeML tool implemented in the PamlX v1.3.1 toolkit 

https://www.geneious.com
https://github.com/ChrisCreevey/catsequences
https://github.com/ChrisCreevey/catsequences
https://github.com/ChrisCreevey/catsequences
https://github.com/ChrisCreevey/catsequences
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[94]. Mean dN/dS values were calculated for two groups: 
Prototheca clade B (7 taxa) and clade C (11 taxa) for all 25 
protein-coding genes identified in the ptDNA sequences 
obtained for these taxa, and compared using two-sided 
Mann–Whitney U-test implemented in Social Science 
Statistics calculator (online tool; https:// www. socsc istat 
istics. com/ tests/ mannw hitney/). Prototheca clade A was 
not included in this analysis, as it comprises only one 
taxon.
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