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Abstract 

RNA velocity, as an extension of trajectory inference, is an effective method for understanding cell development 
using single-cell RNA sequencing (scRNA-seq) experiments. However, existing RNA velocity methods are limited 
by the batch effect because they cannot directly correct for batch effects in the input data, which comprises spliced 
and unspliced matrices in a proportional relationship. This limitation can lead to an incorrect velocity stream. This 
paper introduces VeloVGI, which addresses this issue innovatively in two key ways. Firstly, it employs an optimal 
transport (OT) and mutual nearest neighbor (MNN) approach to construct neighbors in batch data. This strategy 
overcomes the limitations of existing methods that are affected by the batch effect. Secondly, VeloVGI improves 
upon VeloVI’s velocity estimation by incorporating the graph structure into the encoder for more effective feature 
extraction. The effectiveness of VeloVGI is demonstrated in various scenarios, including the mouse spinal cord 
and olfactory bulb tissue, as well as on several public datasets. The results show that VeloVGI outperformed other 
methods in terms of metric performance.
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Background
Single-cell RNA sequencing (scRNA-seq), a cutting-edge 
technology in the realm of single-cell genomics, enables 
the profiling of individual cells at the transcriptome level. 
Nevertheless, a significant hurdle in this field lies in cap-
turing dynamic processes, such as cell-type transitions, 
from static snapshots. Gaining insights into these transi-
tions is pivotal for deciphering intricate phenomena like 

cell differentiation and cycle progression during develop-
ment [1].

Numerous trajectory inference (TI) methods have been 
developed at the methodological level [2]. However, these 
methods have certain limitations as they solely describe 
the current snapshot and lack predictions of both past 
and future states. To address this, recent advancements 
have been made in trajectory inference using RNA veloc-
ity [3]. This approach leverages the dynamic changes 
from nascent to mature mRNA splicing, establishing a 
proportional relationship between the two to describe 
the dynamic trends within cells. By correlating cells and 
reflecting the differentiation relationships between them, 
RNA velocity provides insights into past and future 
states. Visualization of the results reveals that each cell 
possesses a vector, where the direction and length of the 
vector represent the direction and intensity of differen-
tiation, respectively. In simple terms, the TI method 
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relies on supervised information, such as the initial point 
of differentiation, to determine the overall trajectory 
of differentiation. On the other hand, the RNA velocity 
method can autonomously learn the differentiation sta-
tus at the cellular level without the need for supervision. 
Existing methods can be broadly categorized into two 
groups: machine learning methods based on statistics 
and deep learning methods. In the machine learning cat-
egory, notable methods include velocyto [3], scVelo [4], 
CellRank [5], and Dynamo [6]. On the other hand, in the 
deep learning category, there are methods like VeloAE 
[7], UnitVelo [8], DeepVelo [9], VeloVAE [10], Pyro-veloc-
ity [11], and LatentVelo [12]. These methods collectively 
contribute to our understanding of single-cell dynamics 
and play a crucial role in characterizing cell differentia-
tion processes.

Current studies in single-cell RNA sequencing (scRNA-
seq) analysis and cell atlases often involve collecting mul-
tiple samples across different experimental conditions 
and locations, aiming to shed light on a wider range of 
biological phenomena. Time-series sample analysis is 
effective for understanding cell differentiation [13, 14], 
but it introduces batch effects. Existing RNA velocity 
methods can produce error-prone velocity streams when 
batch effects are overlooked, even after preprocessing 
with batch correction techniques [15]. This issue arises 
because batch integration tools typically process a sin-
gle expression matrix, while RNA velocity quantification 
tools [3, 16, 17] provide separate matrices for spliced and 
unspliced mRNA expressions. Correcting these matrices 
separately or concatenating them can disrupt the relative 
ratios of the two types of mRNA, leading to inaccurate 
results [18]. Therefore, there is a pressing need to develop 
RNA velocity methods specifically designed for multi-
batch scRNA-seq datasets, which is the primary focus of 
this study.

In a recent study [19], it was demonstrated that the 
neighborhood construction process during preprocessing 
significantly influences the final RNA velocity results. The 
presence of batch effects naturally leads to more cell–cell 
neighbor relationships within the same batch and fewer 
neighbor relationships between different batches with 
traditional KNN (K-nearest neighbor) approaches. To 
address this issue, we drew inspiration from the Wad-
dington-OT method [20] to compute optimal transpor-
tation mapping for adjacent batches. Additionally, we 
employed the MNN (mutual nearest neighbor) algo-
rithm [21] to establish inter-batch neighbor relation-
ships. Moreover, we incorporated the effectiveness of the 
variational autoencoder (VAE) in removing batch effects 
[22]. Expanding on this concept, we introduced VeloVGI, 
a method that enhances the encoder component of 
VeloVI, performing feature extraction on the fine-tuned 

graph structure to estimate RNA velocity for all batches. 
Furthermore, our approach incorporates sampling and 
aggregation strategies, along with the inductive mini-
batch approach GraphSAGE [23], during model training 
to reduce computational overhead. To validate the effec-
tiveness of our proposed model, we conducted a series of 
downstream analyses.

We conducted extensive tests on a variety of datasets 
to evaluate the performance of our approach. These data-
sets included the mouse spinal cord and olfactory bulb 
tissue, as well as several publicly available datasets. Our 
method consistently demonstrated the ability to accu-
rately capture distinct differentiation patterns within spe-
cific local regions.

Results
High‑level description of VeloVGI model
Briefly, VeloVGI is a principled variational graph 
autoencoder(VGAE) based on a fine-tuned graph 
structure to estimate RNA velocity as shown in Fig.  1. 
In Fig.  1a, this process is designed to handle multiple 
batches of scRNA-seq data, with batch shapes and cell-
type colors used to represent the different samples. The 
method constructs separate inter-batch (in red) and 
intra-batch (in black) relationships, which are combined 
to form innovative multi-batch networks. To facilitate 
analysis, a subset of cells from the network is randomly 
or node-centricity sampled as input to VeloVGI, while 
the remaining cells are recovered through subsequent 
velocity aggregation. In Fig.  1b, firstly, for the sampled 
cells, multiple directed subgraphs are generated using the 
transductive neighbor diffusion strategy. Each directed 
graph structure corresponds to a mini-batch, with both 
unspliced and spliced matrices (u, s) added as features 
and jointly passed as inputs to the model. Then, in the 
specific model, features are extracted in the GCN (graph 
convolution network) to obtain the distribution Z , from 
which the hidden variable z is resampled. The resampled 
z is assigned to specific induction (green), repression 
(blue), or steady (pink) states k in the spliced-unspliced 
plane of a particular gene. The decoder estimates the time 
t, parameter of transcription α(k) , spliced β , and degrada-
tion γ which are calculated jointly (model specification 
of Supplementary Methods in VeloVI [24]) to obtain the 
estimated unspliced and spliced matrices (u(t), s(t)) , with 
the similarity of (u(t), s(t)) and (u, s) as part of the loss 
target to continuously optimize the parameters. Finally, 
the velocity is calculated using Eq.  (6). In Fig.  1c, the 
velocity of unsampled cells is recovered by leveraging the 
known velocity aggregation estimated from the neigh-
borhood of the sampled multi-batch network. In Fig. 1d, 
a variety of biological applications interpret model effec-
tiveness such as hierarchical embedding visualization, 
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lineage subcluster, transition probability, and differential 
expression.

VeloVGI helps to parse the neurodevelopmental 
heterogeneity of mouse spinal cord tissue across various 
data sources and injury time points
Firstly, for the spinal cord injury (SCI) dataset named 
“SCI1,” the velocity stream by VeloVGI is applied for 
analysis, as shown in Fig.  2a and b. These two figures 
are colored based on cell types and batches, respec-
tively. Figure 2c combines the information from Fig. 2a 
and b, displaying significant differences in the propor-
tion and distribution of cell types between different 
batches and highlighting the heterogeneity of cell types 
before and after injury. Next, the Moscot [25] method 
is employed to explore the transition relationships of 
cell types before and after injury, resulting in the tran-
sition probability matrix (Fig.  2d). From the matrix, it 
can be observed that neural stem cells (NSCs) originate 
from ependymal cells and astrocyte, corresponding 
to the sources of the two directions in Fig. 2a. Follow-
ing the concatenation of vector features and coordi-
nate features based on the velocity stream, clustering 
is performed once again, yielding lineage-associated 
subgroups in Fig. 2a called lineage subcluster. The tran-
sition probability matrix in Fig.  2f demonstrates that 

the refined NSCs1 and NSCs2 stem respectively from 
ependymal cells and astrocytes, while Fig. 2g indicates 
the differential expression of marker genes on certain 
NSC subtypes. NSCs2 exhibits a high expression of 
marker genes in some active neural stem cells (aNSCs), 
such as Mki67 (Fig S1b), suggesting that these cells are 
likely aNSCs stimulated post-injury. Additionally, sev-
eral conclusions aligning with the biological context in 
Fig.  2j were drawn, such as “Ependymal cells → NSCs, 
TAPs → Astrocytes, TAPs → Oligodendrocyte pro-
genitor cells (OPC), TAPs → Neurons” [26–28]. For 
instances not aligning with the conclusions, this might 
be due to the non-adjacency of these cells in the dimen-
sion reduction graph, which is also one of the key fac-
tors influencing the RNA velocity task.

Furthermore, to gain a deeper into the impact of 
batches on the RNA velocity task and to perform cor-
rections, we conducted identical biological experiments 
to obtain related data. The mixed dataset named “SCI2” 
can be observed that the data source significantly influ-
ences the results, leading to batch effects appearing in 
the dimension reduction graph. Nevertheless, there still 
exist instances of cell differentiation that align with the 
biological context, such as “Ependymal cells → NSCs, 
TAPs → OPC, OPC → Oligodendrocyte.”

Fig. 1 Overview of VeloVGI. a Graph construction of multi-batch network and sampled network in preprocessing. b Variational graph autoencoder 
(VGAE) structure and velocity estimation. c velocity aggregation for unsampled cells. d a variety of biological application
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VeloVGI show the dynamic process of immune‑related cells 
during spinal cord injury repair
VeloVGI obtains velocity stream of immune-related 
cells in mouse spinal cord injury (dataset named SCI3), 
as shown in Fig.  3a and b. From the perspective of cell 
types, there is a differentiation trend from microglia to 
macrophage, which aligns with the biological context 
[29]. Additionally, the batches are displayed here, includ-
ing un-injury, 12  h post-injury (pSCI12h), and 1  day to 
90 days post-injury (pSCI1d ~ pSCI90d). Stratifying these 

cells by time points (Fig.  3c) reveals that in the unin-
jured state, only microglia cells are present. However, a 
significant shift occurs after 12  h of injury stimulation, 
indicating a trend towards macrophage differentiation. 
In the dimensionality reduction plot, cells in the injured 
state are distanced from the uninjured state and gradually 
approach it over time, corresponding to the self-repair 
process after spinal cord injury. Generally, the veloc-
ity stream not only illustrates the differentiation process 
from microglia to macrophage cell types but also reflects 

Fig. 2 RNA velocity stream plot analysis on neural-related cells of spinal cord injury (SCI) tissue with VeloVGI. a and b show velocity stream 
with different colors to distinguish cell type and batch. c visualizes the heterogeneity of cell types in different batches by displaying the batches 
in a hierarchy embedding. d depicts transition probabilities of different cell types across batches from 0 to 3 calculated by Moscot [25]. e displays 
velocity stream results of NSCs subtyping based on lineage subcluster (detail in the “Methods” section) where the transition probabilities and marker 
gene bubble plot f, g show the clusters difference. h and i show velocity stream with additional data processed by the same experimental 
manipulation. j illustrate the known difference in direction among these related cells
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inter-batch correlations. The neighboring relationships 
among these batch cells are illustrated in Fig. 3d, where 
connections are established between adjacent batches, 
and the sample correlations are depicted in Fig. 3e.

VeloVGI reveals the changes in neural system cells 
during the development of mouse olfactory bulb tissue
The velocity stream of neural system cells in the olfac-
tory bulb tissue generated by VeloVGI is shown in Fig. 4a 
and b. From a cell type perspective, there is no distinct 
differentiation relationship between cell types, which 
is consistent with the biological background of the rel-
evant tissue. Additionally, the figure displays multiple 
time point batches including embryonic stage (E), 0 days 
(0d), 2 weeks (2W), and 6 weeks (6W). By grouping cells 
according to time points (Fig.  4c), the gradual develop-
mental changes of the same cell type over time can be 
observed. The neighboring relationships between these 
batches are illustrated in Fig.  4d, establishing connec-
tions between batches from adjacent time points, while 
the sample correlations are depicted in Fig.  4e, where 

correlations between samples from adjacent time points 
are stronger.

VeloVGI demonstrates accurate RNA velocity estimation 
results in diverse data backgrounds
Finally, we apply VeloVGI to datasets from multiple back-
grounds, all of which included time series batches. Our 
method obtained relatively accurate results for these 
datasets.

On the dentate gyrus dataset, although VeloVGI differ-
entiated in opposite directions in microglia and endothe-
lial cells compared to scVelo stochastic mode, there is 
currently no specific differentiation relationship between 
the two, which has little impact on the overall accuracy of 
the RNA velocity results. In addition, VeloVGI can more 
accurately capture the differentiation direction from 
OPC (oligodendrocyte progenitor cell) to OL (oligoden-
drocyte) while maintaining the accurate direction from 
granule immature to granule mature, radial gila like to 
astrocytes (Fig. 5a).

Fig. 3 RNA Velocity stream analysis on immune-related cells of spinal cord injury (SCI) tissue with VeloVGI. a and b show velocity stream 
with different colors to distinguish cell type and batch. c visualizes the heterogeneity of cell types in different batches by displaying the batches 
in a hierarchy embedding. d depicts the number of neighbors among different batches, establishing batch-to-batch neighbors in chronological 
order. e Heatmap illustrating sample correlations between batches
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For the mef reprogramming data, the adjacent time 
points in the four time point batches of 0, 2, 5, and 
22 days are more similar (Fig. S2a). For this, we estab-
lish neighbors in two adjacent batches (Fig. S2b, c), and 
the neighbor relationship has indicated the approxi-
mate direction of differentiation. Although scVelo can 
obtain a smooth and consistent ground velocity map, 
for the known differentiation direction “mef → day 2 
intermediate → day 2 Ascl1 induced → day 5 intermedi-
ate → day 5 early induced neural cells → neuron,” there 
is a lack of transition from “day 2 Ascl1 induced → day 
5 intermediate,” which VeloVGI was able to compensate 
for (Fig. S2b).

For the gastrulation data, sampling is conducted 
every 0.25  days from 6.5 to 8.5  days during the embry-
onic period. The similarity between the samples is high, 
with all similarities above 0.89 and the highest similarity 
between adjacent batches (Fig. S2d). Therefore, we do not 
specify the establishment of neighbors between adjacent 
batches, but instead use the default neighbor construc-
tion method of scVelo to establish neighbor relationships 
among all batches (Fig. S2e). More neighbor relation-
ships can be automatically established between adjacent 
batches, and the gradual differentiation of cells over 
time can also be seen from the dimensionality reduction 

results of batches (Fig. S2f ). The velocity stream can 
more accurately indicate the relationship between cell 
differentiation (Fig. 5c). Compared with scVelo, VeloVGI 
can capture the transition from cluster Epiblast to Primi-
tive Streak (in the dashed box), while perfectly restoring 
the erythroid lineage (Fig. 5d).

Comparison experiment and ablation study
In order to quantitatively compare with other methods in 
terms of metrics, we introduced CBDir(cross-boundary 
direction correctness) and ICVCoh(in-cluster coherence) 
proposed by the VeloAE [7]. Building upon these metrics, 
we developed BCBDir(batch CBDir) and BICVCoh(batch 
ICVCoh), which are specifically designed to evalu-
ate the impact of RNA velocity on batch datasets. The 
above metrics are calculated for all the datasets showing 
method chapter, as summarized in Table 1, 2, 3, and 4. In 
these tables, “N” represents that LatentVelo can not fin-
ish calculation on these datasets for computer resource 
limitations. In Table 1 and 3, “F” represents that there is 
no known differential direction in these datasets.

In the presented analysis, the performance metrics are 
computed as aggregated values across all cells within 
each dataset. Specifically, for ICVCoh and BICVCoh, 
the metric values are averaged over all individual cells. In 

Fig. 4 RNA Velocity stream analysis on neural system cells of spinal cord injury (SCI) tissue with VeloVGI. a and b show velocity stream with different 
colors to distinguish cell type and batch. c visualizes the heterogeneity of cell types in different batches by displaying the batches in a hierarchy 
embedding. d depicts the number of neighbors among different batches, establishing batch-to-batch neighbors in chronological order. e Heatmap 
illustrating sample correlations between batches
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contrast, for CBDir and BCBDir, the calculations involve 
a two-step averaging process: Firstly, values are averaged 
within each known cluster pair, and subsequently, these 
averages are combined to provide an overall mean for 

each cluster pair. This approach is particularly tailored to 
inter-distributional comparisons, as illustrated in the box 
line plots. Figure 6 provides a detailed cell-level perspec-
tive through box plots, offering a more granular insight 

Fig. 5 Comparison of scVelo(stc) and VeloVGI for RNA velocity analysis. Analysis on dentategyrus (a), mef reprogramming (b), gastrulation (c), 
and gastrulation erythroid (d). Key parts corrected by VeloVGI are marked with dashed boxes. scVelo(stc) means scVelo with the stochastic
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Table 1 CBDir metric of a comparison experiment

Method dataset SCI1 SCI2 SCI3 Olfactory 
bulb

Dentate gyrus Mef 
reprogramming

Gastrulation Gastrulation 
erythroid

scVelo(det)  − 0.074  − 0.035  − 0.119 F 0.301 0.313  − 0.280  − 0.028

scVelo(dyn)  − 0.061  − 0.009  − 0.132 F 0.268 0.410  − 0.241  − 0.299

scVelo(stc)  − 0.070  − 0.020  − 0.141 F 0.017 0.576  − 0.254 0.149

VeloAE  − 0.030  − 0.070  − 0.043 F 0.037 0.515 0.463 0.703
DeepVelo  − 0.082 0.046  − 0.074 F  − 0.128 0.092  − 0.352 0.332

LatentVelo  − 0.136  − 0.085 N F 0.040 0.595 N  − 0.634

VeloVAE  − 0.075 0.019  − 0.127 F 0.131 0.558  − 0.211  − 0.248

VeloVI  − 0.116 0.020  − 0.112 F 0.408 0.063  − 0.495 0.060

VeloVGI(FC) 0.077 0.19 0.108 F 0.685 0.639 0.623 0.612

VeloVGI(KNN) 0.036 0.036 0.163 F 0.045 0.461 0.718 0.785
VeloVGI 0.058 0.031 0.128 F 0.614 0.549 0.718 0.609

Table 2 ICVCoh metric of a comparison experiment

Method dataset SCI1 SCI2 SCI3 Olfactory bulb Dentate gyrus Mef 
reprogramming

Gastrulation Gastrulation 
erythroid

scVelo(det) 0.871 0.888 0.797 0.775 0.814 0.643 0.644 0.625

scVelo(dyn) 0.841 0.804 0.834 0.789 0.860 0.851 0.882 0.841

scVelo(stc) 0.912 0.932 0.888 0.870 0.899 0.903 0.781 0.741

VeloAE 0.970 0.976 0.952 0.985 0.997 0.919 0.998 0.990

DeepVelo 0.919 0.923 0.854 0.880 0.929 0.745 0.931 0.916

LatentVelo 0.975 0.967 N 0.944 0.975 0.882 N 0.975

VeloVAE 0.819 0.814 0.811 0.796 0.881 0.864 0.888 0.859

VeloVI 0.922 0.910 0.938 0.923 0.880 0.719 0.902 0.886

VeloVGI(FC) 0.943 0.938 0.966 0.900 0.980 0.949 0.979 0.991

VeloVGI(KNN) 0.973 0.956 0.990 0.972 0.969 0.976 0.980 0.995
VeloVGI 0.939 0.873 0.976 0.909 0.982 0.962 0.980 0.993

Table 3 BCBDir metric of a comparison experiment

Method dataset SCI1 SCI2 SCI3 Olfactory 
bulb

Dentate gyrus Mef 
reprogramming

Gastrulation Gastrulation 
erythroid

scVelo(det)  − 0.202 0.022  − 0.111 F 0.233 0.322  − 0.281  − 0.028

scVelo(dyn) 0.127  − 0.021  − 0.138 F 0.292 0.285  − 0.221  − 0.279

scVelo(stc)  − 0.251 0.024  − 0.128 F 0.007 0.429  − 0.252 0.143

VeloAE 0.251  − 0.088  − 0.060 F 0.175 0.687 0.412 0.721

DeepVelo  − 0.248  − 0.034  − 0.077 F  − 0.085 0.311  − 0.330 0.329

LatentVelo  − 0.417  − 0.073 N F 0.058 0.527 N  − 0.628

VeloVAE  − 0.018 0.079  − 0.126 F 0.287 0.417  − 0.200  − 0.224

VeloVI  − 0.025 0.038  − 0.125 F 0.489  − 0.014  − 0.487 0.063

VeloVGI(FC) 0.053 0.205 0.072 F 0.747 0.477 0.653 0.614

VeloVGI(KNN) 0.065 0.033 0.188 F  − 0.025 0.384 0.710 0.772
VeloVGI 0.047 0.047 0.097 F 0.669 0.468 0.710 0.611
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into model performance. The results clearly indicate that 
VeloVGI exhibits superior performance across various 
metrics on most datasets, highlighting its robustness and 
effectiveness in RNA velocity estimation.

What is more, a systematic ablation study demon-
strates the effectiveness of components in the VeloVGI 
model, including the strategy of batch-aware neighbor-
hood construction (OT + MNN) and GCN for graph rep-
resentation learning. We replace the GCN with FC (fully 
connected layer) as VeloVGI (FC). Meanwhile, compared 
to VeloVGI, VeloVGI (KNN) replaces batch-aware neigh-
borhood construction with traditional KNN. Although 
for specific data, the metrics of these two ablation mod-
els have higher scores, overall VeloVGI is more stable on 
multiple datasets, which can be represented as the aver-
age of the two ablation models. Although the model does 
not achieve the best results in all ablation experiments 
across the aggregation metrics, it demonstrates rela-
tive stability. This stability is evident when considering 
the combination of the aggregation metrics presented in 
Tables 1, 2, 3, and 4 and the distribution metrics in Fig. 6. 
For instance, in terms of the CBDir metric, VeloVGI, 
when compared with the ablation models “VeloVGI (FC)” 
and “VeloVGI (KNN),” dsa does not always outperform 
on all datasets as shown in Table  1. However, it con-
sistently achieves at least the top 2 results in the CBDir 
subgraph of the distribution metric (Fig.  6). This obser-
vation underscores a phenomenon where the combina-
tion of models does not yield a straightforward additive 
effect but instead exhibits a pattern of mutual interfer-
ence. Furthermore, the comparison between the ablation 
experiments and the base model, VeloVI, highlights the 
effectiveness of the graph construction and graph convo-
lution modules.

Moreover, to facilitate a comprehensive comparison of 
the performance of various models on the SCI1 dataset, 

Fig. 7 presents radar charts that illustrate the metrics for 
each model. Each subplot in Fig. 7 specifies the area cov-
ered by the corresponding radar chart, providing a visual 
representation of the overall performance. For similar 
comparisons across other datasets, please refer to the 
radar charts in Fig. S3.

Discussion
In this work, we attempt to tackle the challenge of inte-
grating RNA velocity with batch information from the 
perspective of a neighbor graph structure. Our approach 
begins with the construction of a multi-batch network 
during the preprocessing stage, employing the mutual 
nearest neighbors (MNN) technique and the optimal 
transport theory. Subsequently, we employ graph deep 
learning techniques for parameter estimation. Finally, we 
validate the performance of our model through a range of 
downstream analyses.

In the specific data experiments, we showcase the 
outcomes of our work. While we demonstrate supe-
rior performance compared to existing models on these 
batch datasets, it’s important to note that the inherent 
complexity of deep learning models limits our ability to 
provide in-depth interpretations of the results. The inter-
pretability of deep learning models has been a prominent 
topic in recent years and remains a focus for future devel-
opment. While we modify the CBDir and ICVCoh met-
ric to BCBDir and BICVCoh, there is a need for further 
exploration in evaluating the metric of RNA velocity on 
batch datasets.

Furthermore, we provide an outlook on the future. 
Despite the significant advancements made in this 
work, challenges remain. The limited interpretability 
of our deep learning model calls for improvements in 
interpreting model outcomes. Additionally, the appli-
cability of our proposed graph construction strategy 

Table 4 BICVCoh metric of a comparison experiment

Method dataset SCI1 SCI2 SCI3 Olfactory bulb Dentate gyrus Mef 
reprogramming

Gastrulation Gastrulation 
erythroid

scVelo(det) 0.602 0.689 0.792 0.753 0.783 0.274 0.618 0.591

scVelo(dyn) 0.627 0.645 0.779 0.776 0.840 0.882 0.873 0.836

scVelo(stc) 0.718 0.803 0.877 0.859 0.877 0.776 0.766 0.718

VeloAE 0.854 0.925 0.919 0.978 0.996 0.920 0.996 0.977

DeepVelo 0.641 0.801 0.817 0.869 0.908 0.723 0.925 0.911

LatentVelo 0.888 0.919 N 0.939 0.966 0.631 N 0.962

VeloVAE 0.576 0.654 0.743 0.783 0.845 0.926 0.879 0.854

VeloVI 0.769 0.828 0.926 0.918 0.851 0.528 0.896 0.878

VeloVGI(FC) 0.839 0.91 0.939 0.851 0.954 0.904 0.973 0.982

VeloVGI(KNN) 0.901 0.918 0.986 0.970 0.957 0.977 0.978 0.994
VeloVGI 0.863 0.840 0.961 0.894 0.971 0.924 0.978 0.989
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under different conditions (such as different time 
points and treatments) deserves further investigation. 
We also anticipate extending this graph construction 
strategy to the integration of single-cell multi-omics 

data, for instance, employing weighted nearest neigh-
bors (WNN) [30] or inferring RNA velocity in corre-
lated multi-omics data. These directions hold promise 
for inspiring future research endeavors.

Fig. 6 CBDir, ICVCoh BCBDir, and BCBDir metric boxplots evaluate the performance of different RNA velocity models through a series of boxplots, 
which illustrate the distribution of four distinct metrics (CBDir, ICVCoh, BCBDir) across various datasets. Each subplot corresponds to one of the four 
evaluation metrics, and within each subplot, groups of boxplots are organized to represent individual datasets. Within these dataset-specific groups, 
boxplots are color-coded to differentiate between the RNA velocity models under comparison. All metrics are normalized to a range from − 1 to 1, 
with higher values indicating superior model performance
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Conclusions
In conclusion, VeloVGI, an RNA velocity prediction 
framework integrated with graph present learning, dem-
onstrates superior accuracy in estimating across diverse 
biological contexts, as evidenced by quantitative assess-
ments. Furthermore, the effectiveness of VeloVGI has 
been substantiated through a series of downstream anal-
yses, highlighting its potential for advancing our under-
standing of cellular dynamics.

Methods
Datasets
To evaluate the effectiveness of our method, scRNA-seq 
datasets with multiple batches from different biological 
systems are collected and input into our model enrolled. 
Notably, these datasets encompass cell clusters with 
known differentiation directions, allowing us to validate 
the accuracy of our estimated velocity through visualiza-
tion plots and metric values. The data statistics are shown 
in (Table 5) and are described as follows.

The dataset comprising neural-related cells from 
mouse spinal cord injury (SCI) tissue was derived from 
two sources: the GEO database and our own experi-
mental data labeled as "xj". The GEO dataset, accessible 
under the accession number GSE162610, was generated 
using the 10X Genomics platform. On the other hand, 
the xj dataset was obtained through sequencing on the 
BD Rhapsody platform and will be made available in the 
near future. For the purpose of detecting latent differen-
tial relationships, only neural-related cells were selected 
from mouse spinal cord injury (SCI) tissue for analysis. 
The dataset named “SCI1” exclusively contains the GEO 
dataset, while the dataset named “SCI2” contains the 
GEO dataset and xj dataset.

The spinal cord dataset with multiple time-series 
batches is downloaded from GSE189070 and sequenced 
from the 10X genomics platform. The immune-related 
cells are selected to detect the latent differential relation-
ship. The dataset is named as “SCI3” in the work.

The olfactory bulb dataset will be released in the near 
future and sequenced from the BD Rhapsody platform. 
The neural-related cells are selected to detect the latent 
differential relationship. The dataset is named “olfactory 
bulb” in the work.

The above datasets need to be processed upstream 
to get spliced/unspliced expression matrix from fastq 
files, where velocyto [3] is used after cellranger 6.1.2 
for the 10X genomics platform or rhapsody 1.10 for the 
BD Rhapsody platform. The following datasets can be 
accessible as spliced/unspliced expression matrix format 
directly.

The “Dentate gyrus” dataset is one of the most classi-
cal datasets for RNA velocity tasks that can be directly 
downloaded from scVelo packages with scvelo.datasets.
dentategyrus. The transition from OPC (oligodendrocyte 
progenitor cell) to OL (oligodendrocyte) is the known 
differentiation direction that is accurately estimated by 
our method.

The “Mef reprogramming” dataset is the result of one 
of the first methods for designing time-series RNA-
seq experiments and preprocessed [13]. The time series 
batches of the dataset are 0, 2, 5, and 22  days after 
reprogramming. The known transition is from mouse 
embryonic fibroblasts (MEF) to neuronal cells that are 
expressed as “mef → day 2 intermediate → day 2 Ascl1-
induced → day 5 intermediate → day 5 early induced 
neuronal cells → neuron.”

The mouse “Gastrulation” and “Gastrulation eryth-
roid” datasets are both from the scVelo package 
with scvelo.datasets.gastrulation and scvelo.datasets.

Fig. 7 Radar chart of all models for the SCI1 dataset. The four directions of the radar chart correspond to four metrics. Each subplot specifies 
the area covered by the corresponding radar chart showm in the subtitle
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gastrulation_erythroid., where the batch interval is 
0.25  day which is so small that the K-nearest neighbors 
for all total dataset is more suitable for better result 
(Table 5).

Data preprocessing
The pre-processing module of all datasets analyzed in 
this paper does not fully follow the standard procedure of 
scanpy packages since it is necessary to preprocess both 
spliced and unspliced count matrices at the same time. 
The preprocessing part is divided into two major steps as 
a whole.

The first step is quality control and data transformation. 
Firstly, high-quality genes are retained that are expressed 
in at least 20 cells in both spliced and unspliced count 
matrix. Secondly, the matrix is normalized such that the 
sum of all gene expressions in each cell is the same value, 
which is the median of all cell expressions. Then, the 
first 2000 highly variable genes are extracted to acceler-
ate subsequent analyses. Finally, log scaling is performed. 
The above operations can be implemented by calling 
scvelo.pp.filter_and_normalize in the scvelo package.

The second step is feature reduction and neighbor-
hood construction. Firstly, principal component analysis 
(PCA) reduces the feature dimension to accelerate later 
preprocessing operations. Then, the Euclidean distance 
matrices are calculated for cells within the same batch or 
between batches at adjacent time points. The asymmetric 
distance matrices are transferred to symmetric probabil-
ity matrices. Next, KNN constructions are used for cells 
within the same batch and MNN constructions based 
on optimal transfer are used for cells in adjacent time 
batches, respectively. Finally, the local graph structure 
constructed multiple times is concatenated together to 
become the global overall graph structure. The relevant 
formulas are shown below.

The bidirectional transition probabilities pij between 
cells i and j can be calculated based on the unidirectional 
probabilities pj|i from cell i to cell j and pi|j from cell j 
to cell i , following Eq. (3). However, due to the distinct 
meanings of the two types of edges, their calculation 
methods also differ. For intra-batch k-nearest neighbors 
(KNN) construction, the default sc.pp.neighbor func-
tion provided by scanpy can be utilized with the method 
described in (4), where ρi and σi are scaling parameters. 
For inter-batch mutual nearest neighbors (MNN) con-
struction, the POT package can be used to pass the dis-
tance matrix (denoted as “distance”) between batches 
a and b, and ot.emd(Ia, Ib, distances) can be called to 
obtain the optimal transfer probabilities matrix. For this 
matrix, we retain the top K values that represent the 
highest mutual transition probabilities between each pair 
of cells.

Parameter inference of VeloVGI
Several models based on the Variational Autoencoder 
(VAE) framework have been proposed for RNA veloc-
ity analysis in single-cell omics data. Notable examples 
include VeloVAE [10], Pyro-Velocity [11], LatentVelo [12] 
and VeloVI [24]. The VAE models have demonstrated its 
effectiveness in removing batch effects [22], making it a 
valuable tool for analyzing scRNA-seq data. In this study, 
the VeloVGI model, estimating RNA velocity parameters, 
is based on VeloVI due to its efficient implementation in 
scvi-tools [31], a Python library designed for probabilistic 
analysis of single-cell omics data which is easy to deploy 
and redevelop.

(1)pj|i = exp(−(d(xi, xj)− ρi)/σi)

(2)pij = (pj|i + pi|j)− pj|i · pi|j

Table 5 Datasets overview

Dataset # cells # gene Known differentiation direction

SCI1 6997 31,053 Ependymal Cells → NSCs → TAPs, TAPs → Astrocyte → NSCs, 
TAPs → OPC → Oligodendrocyte, TAPs → Neuron

SCI2 20,185 31,053 Ependymal Cells → NSCs → TAPs, TAPs → Astrocyte → NSCs, 
TAPs → OPC → Oligodendrocyte, TAPs → Neuron

SCI3 49,316 42,396 Microglia → Macrophage

Olfactory bulb 36,777 31,053 None

Dentate gyrus 2930 13,913 OPC → OL

Mef reprogramming 252 55,416 mef → day 2 intermediate → day 2 Ascl1-induced → day 5 intermedi-
ate → day 5 early induced neuronal cells → neuron

Gastrulation 89,267 53,801 Epiblast → Primitive Streak, Blood progenitors 1 → Blood progenitors 
2 → Erythroid1 → Erythroid2 → Erythroid3

Gastrulation erythroid 9815 53,801 Blood progenitors 1 → Blood progenitors 2 → Erythroid1 → Eryth-
roid2 → Erythroid3
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The specific estimation process of VeloVI is cen-
tered around VAE. The concatenated matrix (U , S) , 
formed by combining the spliced matrix S and the 
unspliced matrix U  , serves as the input for the model. 
The encoder fits the distribution of features and resam-
ples to obtain the hidden layer representation of cells. 
The decoder first uses this embedding to fit the param-
eters of the transcription rate and the state of the cell 
and then uses the basic RNA velocity assumptions and 
the derived formulas for cell and gene specificity to fit 
the estimated (Û , Ŝ) . Finally, the model is trained by 
minimizing MSE (mean square error) through gradient 
descent. The transcription α , splicing β , and degrada-
tion γ parameters conform to the differential equations 
of a kinetic model. These parameters are estimated by 
fitting the decoder of a variational autoencoder (VAE) 
as an auxiliary task, and the velocity is computed using 
the estimated parameters by formula (6).

VeloVGI adds a graph representation learning strategy 
in the encoder section based on it, fully utilizing neigh-
bor relationships to enhance the model’s representation 
ability, as described in the next section.

Graph learning representation
GCN
Graph convolution network (GCN) [32] is primarily 
designed to extract the latent representation of nodes 
by combining the original feature of nodes and neighbor 
relationships, which can be conducted in matrix form as

The formula consists of message generation and mes-
sage aggregation. Message generation is expressed as 
Zl�l where Zl and �l correspond to feature and weight 
in l-th layer of model. Message aggregation is repre-
sented as D− 1

2WD
− 1

2 where W̃ = W + IN ǫR
N×N based 

weighted adjacency matrix w additionally adds self-loops 
and D̃ is the degree matrix of W̃  . The formula as a whole 
implements the feature transformation Zl+1 from layer 
l to layer l + 1 while Z0 matrix is the concatenation of 
unspliced w (the fomulation variable w should be deleted, 
I can’t do that) count matrix U and spliced count matrix S.

(3)

du(t)

dt
= α(k)(t)− βu(t)

ds(t)

dt
= βu(t)− γ s(t)

(4)
v(g)(t, k) =

ds(g)(t, k)

dt
= βgu

(g)(t, k)− γg s
(g)(t, k)

(5)
Zl+1 = D̃− 1

2 W̃ D̃
− 1

2Zl�lwhereZ0 = concat(U , S)

MiniBatch, GraphSAGE
Since scRNA-seq datasets from tissue samples are usually 
composed of multiple batches and the number of cells 
may be in the tens or even hundreds of thousands, using 
GPU for training becomes extremely resource-intensive 
if all cell features and neighbor relationship graphs are 
input into the model simultaneously. Therefore, a mini-
batch strategy for the graph is needed to split the whole 
graph into many subgraphs to train the model. A simple 
random sampled minibatch is not suitable for this task, 
which results in the loss of a large number of neighbor 
relationships while every minibatch should preserve suf-
ficient neighbor relationships for model training. After 
trying many other strategies, an inductive representa-
tion learning and neighborhood sampling method called 
GraphSAGE [23] was found to be well-suited for this 
task. This strategy, after sampling randomly selected 
nodes, extends to their surrounding neighbors and gen-
erates a directed graph for subsequent message aggrega-
tion. The number of neighbors for each GCN layer and 
the GCN layer count can be adjusted as needed.

The implementation of this graph learning representa-
tion part is mainly based on PyTorch Geometric [33].

Sample and recovery strategy
Sample
The presence of a large number of cells is a notable char-
acteristic of multi-batch datasets. In addition to the pre-
viously mentioned minibatch strategy to reduce resource 
pressure in feature extraction, down-sampling during 
preprocessing can also effectively compress the dataset 
size and reduce resource consumption. Regarding the 
specific sampling method, we discovered that random 
sampling is straightforward and effective after experi-
menting with various methods, including node centrality 
sampling.

Recovery
For cells that have not been sampled, their velocity-
related properties (including the velocity vectors in both 
high and low dimensions, the relevant parameters in the 
underlying assumptions, etc.) can be obtained by calcu-
lating the average of the corresponding properties of the 
sampled neighboring cells as

This process is similar to the moment operation in the 
scVelo package preprocessing process.

Lineage subcluster
The typical subcluster based on gene expression values 
often involves subjective decisions when determining 
whether further sub-clustering is necessary. It requires 

(6)Vk = W̃ k · V0
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choices of resolution and cluster number without clear 
reference. In this regard, lineage subcluster offers a 
solution to these challenges. When accurate velocity 
stream plots are available, some cellular clusters may 
clearly exhibit multiple distinct differentiation trends. 
For example, as seen in Fig. 2a, NSCs exhibit two dis-
tinct subgroups. This observation indicates the pres-
ence of various differentiation potentials within these 
clusters, a phenomenon we term lineage re-cluster. 
These lineage subclusters are defined based on the dif-
ferentiation direction presented in the lineage or devel-
opmental trajectory.

The method for identifying lineage subgroups is 
straightforward. Firstly, it is necessary to determine 
which major clusters have the potential for lineage sub-
groups. This assessment can be made by observing the 
velocity stream to determine whether a particular clus-
ter exhibits consistent and gradual changes in velocity 
vectors. In this context, “consistency” can be inferred 
by examining whether the in-cluster coherence (ICV-
Coh) metric of the major cluster is sufficiently large. 
The concept of “gradual changes” can be evaluated by 
measuring the similarity between the velocity vectors 
of all cells within the major cluster and the average 
velocity vector of the cluster.

Next, the specific segmentation of lineage sub-
groups needs to be established. In this context, we 
perform conduct clustering on concatenated features 
Xlineage_subrecluster = [Vembedding ,Xembedding ] . The optimal 
number of clusters for lineage subgroups is determined 
by selecting the clustering solution with the highest sil-
houette coefficient. This process enhances the accuracy 
of identifying the structure of lineage subgroups.

Evaluation metric
The differentiation relationship in the biological back-
ground, which plays a significant role in RNA veloc-
ity result assessment, can evaluate the validity of RNA 
velocity methods on a reduced dimensional visuali-
zation graph such as UMAP or tSNE. Furthermore, 
cross-boundary direction correctness (CBDir) and in-
cluster coherence (ICVCoh) are currently recognized 
as relatively reliable evaluation metrics that transform 
fuzzy visualizations into precise values [7, 8]. To elabo-
rate, CBDir measures cosine similarity of velocity and 
expression difference among neighbor cells on the ideal 
cluster differentiation boundary and specific direction 
within the heterogeneous cluster to evaluate how likely 
a cell can develop towards other neighbor target cells. 
ICVCoh, on the other hand, assesses velocity consist-
ency among neighbor cells within the homogeneous 
cluster, representing the smoothness of cell velocity.

Boundary cells should be defined before computing 
CBDir, which requires pairs of cell clusters as input of 
ground truth development directions. Boundary cells 
from A to B represent the set CA→B as

The formula for computing the CBDir score is

The formula for computing the ICVCoh score is

In the above formula, N(c) is a set of neighbors of the 
cell c and xc represent the expression of the source cell 
c and target cell c′ in low-dimensional space in UMAP, 
tSNE, or other embedding space.

However, in the real batch datasets, since the inter-
batch neighbor relationships are much fewer than the 
intra-batch neighbor relationships, the two existing met-
rics may focus too much on intra-batch cell velocity per-
formance and ignore the velocity results of batch effect 
integration. To address this issue, we improved on the 
two previous metrics by constructing BCBDir and BICV-
Coh to care only about inter-batch neighbor relationships 
and provide a more effective assessment of the perfor-
mance of RNA velocity on datasets with batch effects. 
The slight modification is that the target cell c′ should not 
belong to the same batch with source cell c represented 
as β̃(c) . The new boundary cell set Cβ̃

A→B , BCBDir, BICV-
Coh are as follows:

Hardware configuration
This work’s hardware configuration is supported by a 
high-performance computing platform of Xidian Univer-
sity with GPU of A100 and V100s.
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scRNA-seq  Single-cell RNA sequencing
OT  Optimal transport
MNN  Mutual nearest neighbor
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{
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}
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TI  Trajectory inference
KNN  K-Nearest neighbor
VAE  Variational autoencoder
GCN  Graph convolution network
SCI  Spinal cord injury
NSC  Neural stem cell
FC  Fully connected layer
CBDir  Cross-boundary direction xorrectness
ICVCoh  In-cluster coherence
BCBDir  Batch cross-boundary direction correctness
BICVCoh  Batch in-cluster coherence

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12915- 024- 02085-8.

Additional file 1: Fig. S1. Related analysis for SCI1 datset. Fig. S2. Batch cor-
relation matrix and neighbor edges for mef reprogramming and gastrula-
tion dataset. Fig. S3. Radar chart for several dataset. 

Acknowledgements
Thanks to all those who maintain excellent databases and to all experimental-
ists who enabled this work by making their data publicly available.

Authors’ contributions
All authors contributed to the article. LY and CZ initiated and envisioned 
the study. ZH，XG and LY formulated the model. ZH was responsible for 
implementing the algorithm and collecting dataset. CZ and JQ conceived and 
carried out the biological experiments. ZH and LY were responsible for writing 
the manuscript, which was subsequently reviewed, edited, and approved by 
all authors. All authors read and approved the final manuscript.

Funding
This research was funded by the National Natural Science Foundation of 
China, 62472344, 62072353, and 62132015; the Shaanxi Science and Technol-
ogy Foundation, 2024JC-YBMS-620.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 28 June 2024   Accepted: 2 December 2024

References
 1. Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to 

understand developmental processes and cell fate decisions. Mol Syst 
Biol. 2018;14(4): e8046.

 2. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell 
trajectory inference methods. Nat Biotechnol. 2019;37(5):547–54.

 3. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, 
et al. RNA velocity of single cells. Nature. 2018;560(7719):494–8.

 4. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity 
to transient cell states through dynamical modeling. Nat Biotechnol. 
2020;38(12):1408–14.

 5. Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, et al. Cell Rank 
for directed single-cell fate mapping. Nat Methods. 2022;19(2):159–70.

 6. Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, Yang 
D, et al. Mapping transcriptomic vector fields of single cells. Cell. 
2022;185(4):690–711 e45.

 7. Qiao C, Huang Y. Representation learning of RNA velocity reveals 
robust cell transitions. Proc Natl Acad Sci. 2021;118(49): e2105859118.

 8. Gao M, Qiao C, Huang Y. UniTVelo: temporally unified RNA veloc-
ity reinforces single-cell trajectory inference. Nat Commun. 
2022;13(1):6586.

 9. Chen Z, King WC, Hwang A, Gerstein M, Zhang J. DeepVelo: Single-cell 
transcriptomic deep velocity field learning with neural ordinary dif-
ferential equations. Science Advances. 2022;8(48):eabq3745.

 10. Gu Y, Blaauw D, Welch JD. Bayesian inference of rna velocity from multi-
lineage single-cell data. bioRxiv. 2022:2022. 07. 08. 499381.

 11. Qin Q, Bingham E, La Manno G, Langenau DM, Pinello L. Pyro-Velocity: 
Probabilistic RNA Velocity inference from single-cell data. bioRxiv. 
2022:2022. 09. 12.507691.

 12. Farrell S, Mani M, Goyal S. Inferring single-cell transcriptomic dynamics 
with structured latent gene expression dynamics. Cell Reports Meth-
ods. 2023;3(9).

 13. Ding J, Sharon N, Bar-Joseph Z. Temporal modelling using single-cell 
transcriptomics. Nat Rev Genet. 2022;23(6):355–68.

 14. Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SAM, et al. Dis-
secting direct reprogramming from fibroblast to neuron using single-
cell RNA-seq. Nature. 2016;534(7607):391–5.

 15. Luecken MD, Büttner M, Chaichoompu K, Danese A, Interlandi M, Mül-
ler MF, et al. Benchmarking atlas-level data integration in single-cell 
genomics. Nat Methods. 2022;19(1):41–50.

 16. He D, Zakeri M, Sarkar H, Soneson C, Srivastava A, Patro R. Alevin-fry 
unlocks rapid, accurate and memory-frugal quantification of single-cell 
RNA-seq data. Nat Methods. 2022;19(3):316–22.

 17. Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min KH, et al. Modular, 
efficient and constant-memory single-cell RNA-seq preprocessing. Nat 
Biotechnol. 2021;39(7):813–8.

 18. Bergen V, Soldatov RA, Kharchenko PV, Theis FJ. RNA velocity—current 
challenges and future perspectives. Mol Syst Biol. 2021;17(8): e10282.

 19. Soneson C, Srivastava A, Patro R, Stadler MB. Preprocessing choices 
affect RNA velocity results for droplet scRNA-seq data. PLoS Comput 
Biol. 2021;17(1): e1008585.

 20. Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon 
A, et al. Optimal-transport analysis of single-cell gene expres-
sion identifies developmental trajectories in reprogramming. Cell. 
2019;176(4):928–43 e22.

 21. Haghverdi L, Lun AT, Morgan MD, Marioni JC. Batch effects in single-
cell RNA-sequencing data are corrected by matching mutual nearest 
neighbors. Nat Biotechnol. 2018;36(5):421–7.

 22. Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative mod-
eling for single-cell transcriptomics. Nat Methods. 2018;15(12):1053–8.

 23. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on 
large graphs. Adv Neural Inf Process Syst. 2017;30.

 24. Gayoso A, Weiler P, Lotfollahi M, Klein D, Hong J, Streets A, et al. Deep 
generative modeling of transcriptional dynamics for RNA velocity 
analysis in single cells. Nat methods. 2024;21(1):50–9.

 25. Lange M, Piran Z, Klein M, Spanjaard B, Klein D, Junker JP, et al. Map-
ping lineage-traced cells across time points with moslin. Genome Biol. 
2024;25(1):277.

 26. Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-
Girard AL, et al. RNA profiling of mouse ependymal cells after spinal 
cord injury identifies the oncostatin pathway as a potential key regula-
tor of spinal cord stem cell fate. Cells. 2021;10(12):3332.

 27. Li C, Wu Z, Zhou L, Shao J, Hu X, Xu W, et al. Temporal and spatial cel-
lular and molecular pathological alterations with single-cell resolu-
tion in the adult spinal cord after injury. Signal Transduct Target Ther. 
2022;7(1):65.

 28. Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogene-
ity and regulation in the adult mammalian brain. Development. 
2019;146(4):dev156059.

 29. David S, Kroner A. Repertoire of microglial and macrophage responses 
after spinal cord injury. Nat Rev Neurosci. 2011;12(7):388–99.

https://doi.org/10.1186/s12915-024-02085-8
https://doi.org/10.1186/s12915-024-02085-8


Page 16 of 16Huang et al. BMC Biology          (2024) 22:290 

 30. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler 
A, et al. Integrated analysis of multimodal single-cell data. Cell. 
2021;184(13):3573–87 e29.

 31. Gayoso A, Lopez R, Xing G, Boyeau P, Valiollah Pour Amiri V, Hong J, 
et al. A Python library for probabilistic analysis of single-cell omics 
data. Nature biotechnology. 2022;40(2):163–6.

 32. Kipf TN, Welling M. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:160902907. 2016.

 33. Fey M, Lenssen JE. Fast graph representation learning with PyTorch Geo-
metric. arXiv preprint arXiv:190302428. 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data
	Abstract 
	Background
	Results
	High-level description of VeloVGI model
	VeloVGI helps to parse the neurodevelopmental heterogeneity of mouse spinal cord tissue across various data sources and injury time points
	VeloVGI show the dynamic process of immune-related cells during spinal cord injury repair
	VeloVGI reveals the changes in neural system cells during the development of mouse olfactory bulb tissue
	VeloVGI demonstrates accurate RNA velocity estimation results in diverse data backgrounds
	Comparison experiment and ablation study

	Discussion
	Conclusions
	Methods
	Datasets
	Data preprocessing
	Parameter inference of VeloVGI
	Graph learning representation
	GCN
	MiniBatch, GraphSAGE

	Sample and recovery strategy
	Sample

	Recovery
	Lineage subcluster
	Evaluation metric
	Hardware configuration

	Acknowledgements
	References


