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Abstract 

Background  Accurate and robust drug response prediction is of utmost importance in precision medicine. Although 
many models have been developed to utilize the representations of drugs and cancer cell lines for predicting cancer 
drug responses (CDR), their performances can be improved by addressing issues such as insufficient data modality, 
suboptimal fusion algorithms, and poor generalizability for novel drugs or cell lines.

Results  We introduce TransCDR, which uses transfer learning to learn drug representations and fuses multi-modality 
features of drugs and cell lines by a self-attention mechanism, to predict the IC50 values or sensitive states of drugs 
on cell lines. We are the first to systematically evaluate the generalization of the CDR prediction model to novel (i.e., 
never-before-seen) compound scaffolds and cell line clusters. TransCDR shows better generalizability than 8 state-of-
the-art models. TransCDR outperforms its 5 variants that train drug encoders (i.e., RNN and AttentiveFP) from scratch 
under various scenarios. The most critical contributors among multiple drug notations and omics profiles are 
Extended Connectivity Fingerprint and genetic mutation. Additionally, the attention-based fusion module further 
enhances the predictive performance of TransCDR. TransCDR, trained on the GDSC dataset, demonstrates strong pre-
dictive performance on the external testing set CCLE. It is also utilized to predict missing CDRs on GDSC. Moreover, we 
investigate the biological mechanisms underlying drug response by classifying 7675 patients from TCGA into drug-
sensitive or drug-resistant groups, followed by a Gene Set Enrichment Analysis.

Conclusions  TransCDR emerges as a potent tool with significant potential in drug response prediction.

Keywords  Drug response prediction, Multimodal learning, Cancer cell line, Deep learning, Drug representation 
learning, Transfer learning

Background
Tumors exhibit intra- and inter-tumoral heterogene-
ity [1], contributing to the variable efficacy of anticancer 
drugs among different tumor subtypes and patients. In 
order to enhance clinical outcomes and patient survival 
rates, precision/personalized medicine [2] seeks to indi-
vidualize treatments based on the specific molecular 
characteristics of each patient [3]. Genomics, epigenom-
ics, and transcriptomics have emerged as invaluable tools 
for providing unprecedented insights into the underlying 
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molecular mechanisms of cancer [4]. Precision medicine 
and drug repurposing can be considerably facilitated by 
performing a systematic analysis of drug properties and 
multi-omics features of cancer cell lines and accurately 
predicting cancer cell drug responses.

The advent of large-scale drug sensitivity data and the 
genomic data for over 1000 cultured cancer cell lines, 
such as Genomics of Drug Sensitivity in Cancer (GDSC) 
[5], NCI-60 [6], and Cancer Cell Line Encyclopedia 
(CCLE) [7], has enabled the development of computa-
tional models to predict cancer drug responses (CDR). 
Several novel models, including DeepCDR [8], Deep-
TTA [9], and GraphDRP [10], have been reported using 
standard datasets extracted from the GDSC. These end-
to-end models share a similar architecture, with drug 
and cell line encoders learning representations for drugs 
and cell lines. Stacked fully connected layers then utilize 
these representations to predict drug sensitivities. Con-
sequently, generating an accurate and robust prediction 
model requires appropriate representation learning for 
drugs and cell lines. The emergence of novel deep learn-
ing modules, such as convolutional neural networks 
(CNN), graph neural networks (GNN) [11, 12], and 
Transformer [13], has motivated their application to CDR 
models [14]. For example, GraphDRP [10] and GraOm-
icDRP [12] utilized GNNs (e.g., GIN and GAT) to learn 
drug features from their graph representation. DeepTTA 
employed a Transformer module for drug representa-
tion learning from extended-connectivity fingerprints 
(ECFP) [9]. CNN blocks were utilized to extract features 
from multi-omics data for cell lines [10, 12, 15]. Previous 
studies have demonstrated the superiority of GraphDRP 
and DeepCDR over traditional machine learning meth-
ods (e.g., ENet and random forest) and three deep learn-
ing methods (CDRscan, tCNN, and MOLI) [16]. In this 
regard, we will present a comprehensive comparison of 
our proposed method with GraphDRP and DeepCDR 
in the following section, highlighting their performance 
differences. Additionally, models such as TGSA [17] and 
DRPreter [18] were proposed to make better use of prior 
domain knowledge (e.g., protein–protein interaction). 
They applied GNN to extract cell line features from gene 
networks.

Despite the considerable progress achieved in CDR 
models, several limitations still exist. Firstly, labeled 
drugs for CDR tasks are often scarce, leading to defi-
cient representation learning of drugs. Secondly, 
while these CDR models aim to learn more appropri-
ate drug representations from 1D Simplified Molecu-
lar Input Line Entry System (SMILES) strings [19] 
or 2D molecular graphs, or ECFPs and achieve high 
accuracy, the potential interplay among multiple 

drug representations has yet to be fully explored [20]. 
Thirdly, the fusion representation of CDR is obtained by 
concatenating representations of drugs and cell lines, 
thereby limiting CDR models’ performance. Finally, 
the accuracy of prior methods significantly drops when 
predicting the response of an unrepresented drug in 
the training set, and their inability to accurately predict 
CDRs in cold start scenarios has not been thoroughly 
evaluated and discussed. These substantial limitations 
will hinder the effectiveness of CDR models in preci-
sion medicine and drug repurposing.

Transfer learning is a technique that aims to enhance 
models’ performance on small-volume datasets by 
transferring knowledge extracted from related large-
scale datasets [21]. Although this technique is wildly 
applied in natural language processing [22] and com-
puter vision, its development in computational chem-
istry is yet to be effectively realized. Recently, several 
pre-trained drug encoders have been made avail-
able. For example, ChemBERTa is a BERT-like trans-
former model pre-trained on a vast corpus of SMILES 
strings through masking language modeling of chemi-
cal SMILES strings [23]. Gin_supervised_masking is a 
graph isomorphism network (GIN) model pre-trained 
with supervised learning and attribute masking [24]. 
These pre-trained drug encoders can be implemented 
to learn global and expressive drug representation 
and transferred to various downstream tasks, such as 
drug response prediction, drug-target prediction, drug 
design, and property prediction.

We proposed an end-to-end regression/classification 
model, TransCDR (Fig.  1), to overcome the abovemen-
tioned limitations. TransCDR captured high-dimensional 
features from the drug’s SMILES strings (S), molecular 
graphs (G), and ECFPs (F), as well as the associations 
between drug and cell line representations, to predict the 
half maximal inhibitory concentration (IC50) value when 
presented with a drug-cell line pair. TransCDR signifi-
cantly outperformed SOTA models for predicting IC50 
values or sensitive states under warm and cold start. Sev-
eral innovative aspects of the model’s architecture con-
tributed to the success of TransCDR. First, we introduced 
transfer learning to extract the chemical features of drugs 
automatically. Second, we integrated 3 drug structural 
representations (i.e., S, G, F). Third, we leveraged a multi-
head attention mechanism to fuse the representations of 
drugs and cell lines. Finally, we evaluated the prediction 
ability of TransCDR on external verification sets: CCLE 
and applied the trained TransCDR to screening drugs for 
clinical patients. Furthermore, we elucidated the biologi-
cal mechanisms of candidate CDRs via Gene Set Enrich-
ment Analysis (GSEA). Thus, TransCDR contributed to 
cancer drug prediction and drug repurposing/discovery.
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Results
Sensitivity analysis and performance evaluation 
of TransCDR
We have analyzed the effects of learning rate, batch size, 
and epochs on the model’s predictive performance. Our 
results demonstrated that TransCDR exhibits robustness 
to variations in the learning rate and batch size, indicat-
ing a reduced likelihood of overfitting or underfitting 
(Additional file 1: Fig. S1). Notably, TransCDR achieved 
optimal predictive performance on PC, SC, and C-index 
[25] when the batch size was set to 64 and the learning 
rate was 1E − 5. Therefore, we adopted these hyperpa-
rameters in our subsequent experiments. Furthermore, 
our preliminary results suggested that the model can 
converge within 100 epochs. Consequently, we set the 
maximum number of epochs to 100 and employed early 
stopping to determine the optimal epoch for model train-
ing. For activation functions, optimizer, and dropout rate, 
we followed the previous research [9].

The evaluation performance of TransCDR exhibited 
significant variations across 5 distinct sample scenarios 

(i.e., warm start, cold cell (10 clusters), cold drug, cold 
scaffold, cold cell and scaffold), underscoring the diverse 
efficacy of TransCDR and its applicability in real-world 
contexts. For the warm start scenario, TransCDR exhib-
ited relatively high prediction performance with an 
RMSE of 0.9703 ± 0.0102 and PC of 0.9362 ± 0.0014 in 
regression tasks, indicating its precise application in pre-
dicting missing IC50 of drugs on cell lines in GDSC. How-
ever, the cold start scenario was more challenging due to 
the inclusion of scaffold/cell lines that were unseen dur-
ing the training process. TransCDR performed worse 
with more strict data segmentation strategies (Additional 
file 2: Fig. S2). As demonstrated in Table 1, the regression 
PC of TransCDR was 0.8639 ± 0.0103 under the strictest 
cold cell scenario, highlighting its generalizability in pre-
dicting drug responses of unseen omics profiles, particu-
larly for patients with known anticancer drugs, which can 
greatly aid precision medicine. The PC values were found 
to be 0.5467 ± 0.1586, 0.4816 ± 0.1433, and 0.4146 ± 0.1825 
for cold drug, cold scaffold, and cold cell and scaffold sce-
narios, respectively, suggesting its potential in predicting 

Fig. 1  The framework of TransCDR includes three drug modules (ChemBERTa, GIN, MLP) for extracting drug features from SMILES strings, molecular 
graphs, and fingerprints, respectively. Similarly, there are three cell line modules (MC_module, GE_module, and DM_module) for extracting cell line 
features from genomic mutation, gene expression, and DNA methylation data, respectively. The drug and cell line representations are fused using 
a self-attention-based fusion module. Finally, the fusion representation is fed to a regression/classification network consisting of four fully connected 
layers to predict the ln(IC50) or sensitive state
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massive unseen drug/compound responses on seen/
unseen cell lines, hence, offering a powerful tool for drug 
repurposing and discovery.

Performance comparison of TransCDR and other models
To verify the effectiveness of our proposed TransCDR, 
we compared TransCDR with DeepCDR [8], GraphDRP 
[10], DeepTTA [9], TGSA [17], and DRPreter [18] on 
the GDSC dataset. TransCDR achieved the best perfor-
mance with the highest PC, SC, and C-index compared 
to DeepCDR, GraphDRP_GAT_GCN, GraphDRP_GIN-
ConvNet, GraphDRP_GATNet, and GraphDRP_GCN-
Net under all scenarios (Fig. 2). TransCDR demonstrated 
significant superiority over DeepCDR (9.134E − 5), 
GraphDRP_GAT_GCN (1.649E − 4), GraphDRP_GAT-
Net (9.134E − 5), GraphDRP_GCNNet (9.134E − 5), and 
DeepTTA (9.134E − 5) on PC under the warm start sce-
nario (Fig.  2A–C). These findings indicated that lever-
aging knowledge learned from large chemical datasets 
using ChemBERTa and GIN modules can lead to sub-
stantial improvements in predictive performance when 
applied to CDR prediction tasks under the warm start 
scenario. Notably, while DRPreter and TGSA demon-
strated comparable performance to TransCDR on a warm 
start, with no significant difference in their PC (p > 0.05), 
they faltered under the cold scaffold and drug scenarios, 
highlighting the robustness of TransCDR across different 
settings. The results indicated that DRPreter and TGSA 
were overfitting to training sets and thus cannot general-
ize to the novel drugs and scaffolds. TransCDR displayed 
superior generalization capabilities, particularly in the 
challenging cold scaffold task. TransCDR had comparable 
performance with DRPreter, TGSA, and DeepTTA under 
cold cell cluster, even though TransCDR was trained 
without prior knowledge: protein–protein interactions. 
These findings suggested that the transfer learning strat-
egy could effectively transfer the knowledge learned from 
a large-scale chemical dataset, thereby improving the 
prediction performance of TransCDR on novel drugs and 
scaffolds. From the perspective of real application scenar-
ios, TransCDR was the best model to efficiently integrate 

information and extract features from the structures of 
drugs and multi-omics data of cell lines for drug response 
predictions.

Transfer learning exhibits superior performance 
in comparison to training a model from scratch
We investigated the effectiveness of transfer learning by 
converting the pre-trained drug representation modules 
into drug encoders trained from scratch (Section  Tran-
sCDR variants without pre-training). As depicted in 
Fig.  3, TransCDR with pre-trained drug encoders dem-
onstrated superior performance compared to its vari-
ants, including sequence-based (i.e., TransCDR_CNN 
and TransCDR_RNN), graph-based (i.e., TransCDR_
AttentiveFP, and TransCDR_NeuralFP), and FP-based 
(i.e., TransCDR_ECFP) models. Specifically, the RMSE 
of TransCDR variants increased to over 0.9845, while 
the PC, SC, and C-index of TransCDR variants dropped 
below 0.9342, 0.9124, and 0.8780, respectively under the 
warm start scenarios (Wilcoxon test, p < 0.05). Moreo-
ver, our comprehensive evaluation revealed that Tran-
sCDR consistently outperforms other model variants 
across diverse scenarios, including warm start, cold 
drug, and cold cell line and scaffold settings (Wilcoxon 
test, p < 0.05). Specifically, under warm start conditions, 
TransCDR’s PC surpassed those of TransCDR_ECFP 
(p = 0.0245), TransCDR_NeuralFP (p = 0.001), Tran-
sCDR_AttentiveFP (p = 8.981E − 5), TransCDR_CNN 
(p = 8.981E − 5), and TransCDR_RNN (p = 9.032E − 5). 
In the cold cell line and scaffold scenarios, the PC values 
of TransCDR_ECFP, TransCDR_NeuralFP, TransCDR_
CNN, TransCDR_AttentiveFP, and TransCDR_RNN 
decreased by 45.43%, 46.69%, 45.98%, 28.52%, and 
39.96%, respectively, compared to the pre-trained Tran-
sCDR model. The results suggested that transfer learning 
was reliable for learning drug representations by leverag-
ing the chemical knowledge extracted from large-scale 
datasets like ZINC and PubChem. Notably, TransCDR 
variants inherently learned drug representations by 
training an end-to-end model on the training set. How-
ever, their performance on the test set with unseen drugs 

Table 1  Evaluation performance of TransCDR under the 5 scenarios

The performance of the TransCDR regression model is assessed using metrics such as RMSE, PC, SC, and C-index. All results are obtained by 10-CV

Bold indicates the best predictive performance under the 5 scenarios

Sample scenarios RMSE PC SC C-index

Warm start 0.9703 ± 0.0102 0.9362 ± 0.0014 0.9146 ± 0.0020 0.8797 ± 0.0013
Cold cell (10 clusters) 1.3949 ± 0.0897 0.8639 ± 0.0103 0.8243 ± 0.0085 0.8213 ± 0.0051

Cold drug 2.2756 ± 0.3785 0.5467 ± 0.1586 0.4678 ± 0.1367 0.6651 ± 0.0523

Cold scaffold 2.3722 ± 0.3794 0.4816 ± 0.1433 0.4470 ± 0.1423 0.6571 ± 0.0522

Cold cell and scaffold 2.4518 ± 0.4201 0.4146 ± 0.1825 0.3681 ± 0.1918 0.6283 ± 0.0693
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Fig. 2  Performance comparisons are conducted between TransCDR and 7 other models, namely, DRPreter, TGSA, GraphDRP_GAT_GCN, GraphDRP_
GINConvNet, GraphDRP_GATNet, GraphDRP_GCNNet, DeepCDR, and DeepTTA on 5 scenarios
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Fig. 3  The performances of TransCDR and its variants with various drug representation modules



Page 7 of 20Xia et al. BMC Biology          (2024) 22:227 	

could be better. TransCDR_ECFP attained better perfor-
mance than other variants thanks to the generation of 
informative FP representations through Morgan’s algo-
rithm. Interestingly, in the cold cell line scenario, while 
TransCDR’s mean PC was higher than those of other 
models, the differences were not statistically significant 
(Wilcoxon test, p > 0.05), with the exception of Tran-
sCDR_RNN (p = 0.0225). This finding implied that Tran-
sCDR’s strength lies not in predicting the responses of 
unknown cell lines on drugs, but rather in predicting the 
responses of cell lines to unknown drugs, highlighting its 
potential in facilitating drug discovery and development.

Impact of each modality in TransCDR
The present study provided insights into the effectiveness 
of the proposed framework for drug response predic-
tion. Ablation studies were conducted by removing each 
feature (i.e., S, G, and F of drugs, and MC, GE, and DM 
of cell lines) from TransCDR, and the resulting decrease 
in predictive performance was analyzed. Figure  4 dem-
onstrated that removing these features affected the per-
formance of TransCDR. Specifically, the performance 
dropped by 0.14% (S), 0.17% (G), 0.22% (F), 0.18% (GE), 
0.19% (DM), and 0.27% (MC) when each modality was 
removed. MC was found to be the most critical among 
cell line features, followed by GE and DM. F was identi-
fied as the most significant for drug features, followed 
by G and S. These findings corroborated the comparison 
results presented in Fig.  4 and highlighted how multi-
modality fusion could enhance model performance by 
complementing the limitations of individual modalities. 

In summary, MC and F contributed the most among dif-
ferent omics profiles for cell lines and drug notations for 
drugs, respectively.

Furthermore, we invested relative contributions of the 
ChemBERTa and GIN module or the transfer learning 
strategy in TransCDR to the generalization capability of 
TranCDR on cold cell and scaffold scenarios. Our analy-
sis suggested that the ChemBERTa module contributes 
significantly to the generalization capability of TransCDR 
on cold cell and scaffold scenarios, with an ablation study 
showing a 4.19% drop in performance when ChemBERTa 
was removed and a 35.91% drop in performance when 
GIN was removed.

The effectiveness of self‑attention
Two variants of cross-attention, DCA and CDA, were 
implemented along with concatenation operation to 
assess the efficacy of self-attention in the fusion mod-
ule. Notably, self-attention outperformed other fusion 
methods in all regression evaluation metrics, includ-
ing RMSE, PC, SC, and C-index (Table  2). For instance, 
the RMSE achieved by self-attention was recorded as 
0.9703 ± 0.0102, surpassing the second-best option 
of concatenation, 0.9845 ± 0.0147 (p = 0.001), with an 
improvement of 0.25% in PC. The attention map (Addi-
tional file  3: Fig. S3) clearly showed that F is the most 
important modality for drugs, while MC is the most 
important modality for cell lines, consistent with the 
results of the ablation experiments. Furthermore, the 
attention weights for F-S, MC-DM, and F-DM pairs 
are high, indicating that self-attention effectively inte-
grates multi-modal features of drugs, cell lines, and their 

Fig. 4  Model ablation experiments results. The x-axis denotes the removal of a specific modality. MC is the most critical characteristic of cell lines, 
as the exclusion of this feature significantly (p < 0.05) increases the RMSE values of TransCDR compared to models without GE or DM. Similarly, F 
is the most significant feature for drugs. The TransCDR model without F demonstrates significantly (p < 0.05) increased RMSE values compared 
to that without G or S



Page 8 of 20Xia et al. BMC Biology          (2024) 22:227 

interactions, which contributes to the improvement of 
model performance. The performance of DCA and CDA 
was inferior as they only focused on the cross-effect 
between drugs and cell lines while disregarding the inter-
nal feature interaction of either.

TransCDR predicts binary drug response
We subsequently assessed the predictive power of Tran-
sCDR in cell line responses to drugs. TransCDR demon-
strated high performance across varying ratios of positive 
and negative samples in the warm start scenario. Specifi-
cally, when the dataset was balanced, TransCDR yielded 
superior performance with an AUROC of 0.8213 ± 0.0067 
and an AUPR of 0.8138 ± 0.0085. When the dataset was 
unbalanced of 1:2, 1:5, and 1:8, TransCDR displayed a 
slight increase in AUROC and a decline in AUPR, with 
reductions over 8.76%, 20.99%, and 26.93% for AUPR, 
respectively. These findings highlighted the impact of 
dataset imbalance on the predictive power of Tran-
sCDR, with AUPR exhibiting sensitivity to sample ratio 
variations. Therefore, we utilized AUPR as the primary 
evaluation metric. In the cold test setting, the AUPR of 
TransCDR reduced more compared with a warm start 

when the dataset was imbalanced. Specifically, when the 
sample ratio was 1:1, TransCDR in cold cell achieved an 
AUPR of 0.7492 ± 0.0227, which was 39.52% higher than 
that of the 1:8 sample ratio of (AUPR = 0.3540 ± 0.0381). 
Similarly, in the cold drug setting, a sample ratio 1:1 
yielded optimal performances (Fig.  5). Consequently, 
subsequent experiments were conducted using the sam-
ple ratio of 1:1.

Application of TransCDR on GDSC
The pre-trained TransCDR exhibited excellent perfor-
mance across a diverse range of cancer types (Fig. 6A–
C), cell lines (Fig. 6D–F), and drugs (Fig. 6G–I). In all 
tested cancer types, the PC and SC values ranged from 
0.9624 to 0.9763 and 0.9345 to 0.9591, respectively 
(Additional file 4: Table S1). The PC and SC values for 
cell lines ranged from 0.9192 to 0.9886 and 0.8723 to 
0.9676, respectively (Additional file  5: Table  S2). The 
performance of TransCDR on drugs varied consid-
erably, with the PC and SC ranging from 0.3949 to 
0.9838 and 0.3983 to 0.9814, respectively (Additional 
file 6: Table S3). Employing the trained TransCDR, we 
predicted 34,662 missing IC50 values for drug-cell line 

Table 2  The performance of TransCDR with distinct fusion methods

The best results are emphasized using bold font, and the second-best results are italicized

Fusion module RMSE PC SC C-index

Self-attention 0.9703 ± 0.0102 0.9362 ± 0.0014 0.9146 ± 0.0020 0.8797 ± 0.0013
DCA 0.9962 ± 0.0208 0.9326 ± 0.0029 0.9099 ± 0.0025 0.8761 ± 0.0021

CDA 1.0303 ± 0.0104 0.9275 ± 0.0015 0.9048 ± 0.0024 0.8720 ± 0.0017

Concatenate 0.9845 ± 0.0147 0.9339 ± 0.0020 0.9117 ± 0.0022 0.8773 ± 0.0017

Fig. 5  TransCDR’s performance evaluation is assessed across 4 sampling scenarios utilizing 4 sampling ratios between positive and negative 
samples (1:1, 1:2, 1:5, and 1:8)

Fig. 6  A–C The scatter plots of CDRs of specific cancer types, specifically adrenocortical carcinoma (ACC), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), and multiple myeloma (MM), with the top 3 prediction performances. D–F The scatter plots of CDRs 
of specific cell line types, specifically T-lymphoid cell line (CML-T1), NCI-H1105, and BALL-1, with the top 3 prediction performances. G–I The scatter 
plots of CDRs of specific drugs, including FK866, Gemcitabine, and GSK1070916, with the top 3 prediction performances. J The study categorizes 
drugs based on their average predicted IC50 values in ascending order, with the top 10 drugs being sensitive and the bottom 10 being resistant

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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pairs in the GDSC database, corresponding to approxi-
mately 18.10% of all 191,475 pairs involving 851 cancer 
cell lines and 225 drugs. We ranked the IC50 values pre-
dicted by the regression model in ascending order and 
selected the top 10% (3,466) drug-cell line pairs inclu-
sive of 610 cancer cell lines and 75 drugs (Additional 
file 7: Table S4). Our work confirmed previous research 
findings on the top 15 (the lowest IC50) drug-cell line 
pairs that were molecularly effective in cancer treat-
ment, involving 15 cell types, 4 drugs, 10 tissues, and 8 
cancers (see additional file 8: Table S5 [26–35]). Nota-
bly, bortezomib, one of the approved proteasome inhib-
itors for treating various malignancies (e.g., SKCM, OV, 
and BRCA) [36], was predicted to be sensitive to differ-
ent cell lines and cancer types. The top 10 “sensitive” 
and the last 10 “resistant” drugs are depicted in Fig. 6J. 
As anticipated, several sensitive/resistant drugs were 
also identified by DeepCDR [8]. For instance, bort-
ezomib, docetaxel, epothilone B, vinblastine, vinorel-
bine, and SN-38 [37] were predicted as sensitive drugs, 
and FR-180204, NSC-87877, GW-2580, DMOG, phen-
formin, and AICAR were predicted as resistant drugs 
by DeepCDR. Additionally, the effectiveness of the 
most potent drugs, bortezomib [38], docetaxel [39], 
and vinblastine [40], has been established in multiple 
cancer types.

External validation results
The present study assessed the efficacy of TransCDR 
trained on the GDSC dataset by evaluating the external 
in  vitro dataset CCLE. The results demonstrated Tran-
sCDR’s outstanding performance with a PC range varying 
from 0.6736 to 0.8931 when tested across diverse cancer 
types. Bile duct cancers exhibited the highest perfor-
mance (PC of 0.8931), while kidney cancer demonstrated 
the lowest (PC of 0.6736) (Additional file  9: Table  S6). 
These findings suggested that TransCDR could effectively 
predict drug response in new cell lines specific to certain 
cancer types. Furthermore, our comparative analysis of 
the predictive performance of TransCDR and other mod-
els on the CCLE dataset revealed that TransCDR exhibits 
superior performance in multiple cancer types, includ-
ing bile duct cancer, sarcoma, and skin cancer (Fig.  7), 
thereby highlighting its robust generalizability across a 
diverse range of cancer types (Additional file 9: Table S6).

We applied TransCDR and other models to real-world 
drug screening scenarios. Notably, TransCDR success-
fully identified numerous CDRs, whereas other methods 
failed to do so (Additional file 10: Table S7). For example, 
our model correctly predicted the sensitivity of 17-AAG 
to A172 cells, which is particularly significant given the 
promising anti-tumor activity of 17-AAG in glioblastoma 
and the widespread use of A172 as a model for this can-
cer type [41, 42]. Furthermore, TransCDR identified the 

Fig. 7  Predictive performance (PC) of TransCDR and other models on the CCLE dataset across various cancer types
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PD-0325901-OV90 pair, which is consistent with previ-
ous reports that PD-0325901 inhibits OV90 cell growth 
by blocking the PI3K/mTOR and RAS/ERK signaling 
pathways, commonly hyperactivated in ovarian cancer 
[43, 44]. These results demonstrated the effectiveness of 
TransCDR in predicting CDRs and its potential to facili-
tate the discovery of novel therapeutic strategies.

TransCDR recognizes biological mechanisms under drug 
response
To recognize biological mechanisms under drug 
response, we utilized the pre-trained TransCDR to screen 
225 drugs for 7675 patients from TCGA. The predicted 
drug sensitivities of these patients were presented in 
Additional file 11: Table S8. We selected the top 10 drugs, 
namely CX-5461, lapatinib, dasatinib, erlotinib, afatinib, 
trametinib, utlin-3a, A-770041, CHIR-99021, and AZD-
0530 for GSEA. By performing GSEA, we were able to 
elucidate the biological mechanisms underlying the pre-
dicted drug sensitivities of patients and explore possible 
underlying mechanisms (Additional file  12: Table  S9). 
Our observation showed that differential expression 
genes caused by afatinib medication demonstrated a 
significant enrichment within gene sets associated with 
breast and lung cancer. This observation aligned with 
evidence supporting afatinib’s efficacy in treating breast 
and lung cancer [45, 46]. Furthermore, the enriched gene 
sets offered insight into afatinib’s therapeutic mecha-
nisms. For instance, up-regulated genes observed in 
afatinib-sensitive patients exhibited a significant enrich-
ment in COLDREN_GEFITINIB_RESISTANCE_DN 
(NES = 1.983, p = 0.0005), which pertained to genes that 
down-regulated in non-small cell lung carcinoma cell 
lines resistant to Gefitinib in comparison to those that 
were sensitive [47]. This finding indicated that gefitinib 
and afatinib operated through similar mechanisms [48]. 
In contrast, the up-regulated genes observed in afatinib-
sensitive patients showcased a significant enrichment in 
HOLLERN_EMT_BREAST_TUMOR_DN (NES = 2.211, 
p = 4.53E − 6), which consisted of genes with low expres-
sion levels in mammary tumors marked by epithelial-
mesenchymal transition histology and could result in 
resistance to afatinib [49].

Discussion
In comparison with existing SOTA models, TransCDR 
exhibited several improvements. Firstly, it outperformed 
other models across diverse prediction tasks under dif-
ferent sample scenarios (warm and cold start). Secondly, 
TransCDR fused the most extensive data modalities, 
incorporating 3 drug representations and 3 omics pro-
files, whereas DeepTTA only considered SMILE strings 
and gene expression profiles. Thirdly, TransCDR learned 

the fusion representations by a self-attention-based mod-
ule which was more effective than a simple concatenation 
operation. Thirdly, we comprehensively assessed the gen-
eralizability of TransCDR across diverse scenarios. Our 
proposed model enhanced the performance in cold drug/
scaffold and cold cell and scaffold scenarios, essential 
for predicting cancer drug response and screening novel 
candidates from a vast drug/compound space.

We demonstrated that generalizing TransCDR to novel 
scaffolds posed a greater challenge than cell line clus-
ters. Several factors contributed to this phenomenon. 
Cell lines were characterized by gene expression profiles 
obtained via omics measurements, providing a compre-
hensive representation of cellular biology features. Con-
versely, compounds were encoded using SMILES strings, 
which may lead to loss of structural information. Further-
more, TransCDR learned drug embedding from SMILES 
strings or molecular graphs using end-to-end training, 
requiring substantial drug structures. Lastly, minor struc-
tural differences between similar compounds may result 
in significant disparities in SMILES strings, yielding dis-
tinct embeddings. TransCDR can serve as an effective 
tool for the cancer-drug response prediction. Addition-
ally, TransCDR have promising applications in drug dis-
covery. Specifically, we can initially assess the scaffold 
similarity of a new compound/drug against known drugs; 
if a similarity scaffold is identified, our predicted CDRs 
will hold greater credibility. If not, TransCDR stands as 
the optimal model to predict CDRs in cold scaffold and 
cold cell and scaffold scenarios.

However, several limitations and potential directions 
for further improving TransCDR have been identified. 
The study requires large-scale, highly qualified datasets, 
including multiple drugs and cell lines. Although drug 
response data have increased dramatically over the past 
decades, cell lines with multi-omics profiles are limited. 
The performance of TransCDR on the cold scaffold is 
significantly better than other SOTA models through 
transfer learning but still has much room for improve-
ment. The current TransCDR cannot capture the drugs’ 
three-dimensional structural information, which inevi-
tably affects drug representation learning. A better drug 
representation model that can extract discriminating 
features from drug notations will be designed, such as 
GeoGNN, which encodes molecules’ topology and geom-
etry information by a geometry-based GNN architec-
ture [50]. Therefore, to further improve the prediction 
performance and interpretability of TransCDR, we will 
propose the next version of TransCDR, trained on the 
larger and more reliable CDR dataset, considering the 
multimodal features of drugs and cell lines and making 
full use of prior domain knowledge. We also evaluated 
the performance of TransCDR on the TCGA dataset, 
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where patient-drug response data were collected from 
previous research [51]. However, we regret to report that 
TransCDR’s predictive performance on this dataset fell 
short of our expectations. We speculated that the model, 
trained on cellular data, may not be directly applicable to 
TCGA samples. We acknowledged the limitations of our 
current approach and proposed fine-tuning the Tran-
sCDR model on patient-related datasets in future studies 
to enhance its predictive power for patient responses to 
drugs.

We leveraged the self-attention mechanism for feature 
fusion, which is invented for long sequence data such 
as languages, but has been extensively applied to fea-
ture fusion tasks [52–54]. In contrast to the concatenate 
module, which represents the most straightforward and 
conventional data fusion approach, we adopted the self-
attention-based fusion strategy to augment the inno-
vativeness of our model. Although the attention-based 
method does not exhibit a pronounced advantage over 
concatenation in the present study, the improvement is 
statistically significant (p < 0.05), we hypothesize that its 
superiority will become more pronounced as the number 
of modalities increases in future research, thereby under-
scoring the potential of self-attention-based fusion in 
fusing complex multimodal data.

Recently, the emergence of large-scale foundation mod-
els on single-cell transcriptomics, such as Geneformer 
[50], scGPT [55], and scFoundation [56], has brought 
new ideas and insights to the field of cell line-drug 
response prediction. Similar to TransCDR, which utilized 
the pre-trained chemical language model, ChemBERTa 
to learn embeddings from SMILES strings, these founda-
tion models can also serve as feature extraction modules 
to learn embeddings from cell lines’ transcriptomics. For 
instance, Minsheng Hao et  al. replaced the MLP-based 
cell line transcriptional feature extraction module in 
DeepCDR with scFoundation and demonstrated that the 
scFoundation-based model significantly outperformed 
the original model [56]. This result further suggested that 
foundation models trained on single-cell transcriptom-
ics can also be applied to learn transcriptomics generated 
by bulk sequencing. However, it is noteworthy that these 
foundation models have a large number of parameters, 
requiring substantial computational resources for fine-
tuning. Fortunately, as a foundation model, scFoundation 
can be directly used as a cell line transcriptional feature 
extraction module. In future work, we can also explore 
the impact of DNA methylation foundation models and 
gene mutation foundation models on CDR prediction 
models.

More drug response prediction methods were devel-
oped with different training objectives and applica-
tion scenarios. For example, GraphCDR was a binary 

classification model used for predicting the drug-cell line 
response, rather than predicting IC50 value [57]. To eval-
uate the model performance, GraphCDR used AUROC 
and F1-score. In contrast to GraphCDR, TransCDR and 
some other compared models were regression mod-
els that predict IC50. Consequently, they typically used 
the PC as the evaluation metric. The pioneering work 
of DeepCoVDR [58] has demonstrated the effectiveness 
of pre-training a CDR prediction model on GDSC and 
fine-tuning it on the SARS-CoV-2 dataset, resulting in 
outstanding predictive performance in COVID-19 drug 
response prediction tasks. By contrast, TransCDR was 
designed for generic cell-line drug response prediction. 
In our future research, we plan to investigate the poten-
tial of fine-tuning TransCDR on specialized datasets 
aligned with specific objectives, with the goal of further 
improving its predictive accuracy on targeted tasks.

Conclusions
In this study, we presented an end-to-end CDR predic-
tion model called TransCDR, which fused multi-modal-
ity representations of drugs, including SMILES string, 
molecular graph, ECFP, and omics profiles, including 
genetic mutation, gene expression, and DNA methylation 
to learn the ln(IC50) values or sensitive states of drugs on 
cell lines. TransCDR outperformed the 8 SOTA models 
and showed high performance under different sample 
scenarios. In addition, TransCDR outperformed multi-
ple variants with drug encoders that were trained from 
scratch. We confirmed that F and genetic mutation con-
tributed the most among multiple drug notations and 
omics profiles, respectively. Furthermore, TransCDR 
showed high prediction performance on the external 
test sets CCLE. Finally, we predicted ln(IC50) values of 
missing CDRs in GDSC and screened the drug response 
of cancer patients to drugs. These candidate CDRs were 
verified by existing literature and GSEA. In summary, our 
deep learning model, TransCDR, offers a powerful tool 
for drug response prediction.

Methods
Data preparation
This study utilized GDSC, CCLE, and TCGA datasets. 
Specifically, GDSC was employed to assess the effective-
ness of TransCDR across various application scenarios, 
including predicting missing CDRs for known cell lines 
and drugs, unseen cell lines, unseen drugs, and unseen 
cell-drug combinations. Additionally, all CDRs from 
the GDSC database were utilized for training the final 
TransCDR model, which was subsequently evaluated on 
external datasets: CCLE.

GDSC v2 constitutes a vital asset in the endeavor of 
discovering therapeutic biomarker for cancer cells [5]. 
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We have gathered a total of 156,813 CDRs that satisfied 
three specific criteria, including 851 cancer cell lines 
and 225 drugs. (1) CDRs encompassed drug sensitiv-
ity profiles ascertained through the measurement of the 
half maximal inhibitory concentration (IC50) or sensitive 
state, which indicated the capacity of a drug to impede 
the growth of specific cell lines. (2) The selected CDRs 
exhibited the presence of three omics data sets: genetic 
mutation, gene expression, and DNA methylation for 
the corresponding cell lines. (3) The included drugs pos-
sessed SMILES strings.

This study obtained mutation and copy number aberra-
tion (MC), gene expression (GE), and DNA methylation 
(DM) profiles from GDSC. Specifically, gene expression 
profiles were downloaded for 1000 human cancer cell 
lines using transcriptional profiling arrays E-MTAB-3610, 
and were pre-processed using the R package affy. The 
Affymetrix GeneChip system, along with the robust 
multiarray average method, was employed for measuring 
gene expression [59], resulting in 18,451 gene expression 
values for each cell line. Subsequently, the gene expres-
sion matrix was then normalized using z-score. The 
MC data consisted of a binary matrix with 735 features, 
where 1 indicated a mutation or copy number aberration 
in the gene, and 0 indicated the absence of such aberra-
tions. The DM matrix was obtained by downloading the 
processed matrix of GSE68379 from GEO, where con-
tinuous values represented the methylation score of each 
CpG. The methylation scores of CpG sites were then 
averaged to obtain methylation scores for genes, resulting 
in 20,617 methylation values for each cell line. The DM 
matrix was also normalized by z-score. Drug SMILES 
strings were retrieved from PubChem [60] and converted 
to canonical SMILES using open-source cheminformat-
ics software RDKit [61].

For each combination of cell line and drug CDPij , cell 
line i was characterized using 3 types of omics data 
(i.e., MC, GE, DM); drug j was represented by SMILES 
strings; and the label of CDPij was the natural logarithm-
transformed IC50. A total of 156,813 CDPs were utilized 
in the development of the regression model. In classifi-
cation experiments, IC50 values were binarized based 
on the provided threshold for each drug [62]. Conse-
quently, a total of 154,603 CDPs were obtained, with 
CDPij ∈ {0,1} , consisting of 18,143 sensitive CDPs and 
136,460 resistant CDPs. We treated all sensitive CDPs as 
positive samples. Then, we randomly sampled CDPs from 
all resistant CDPs as negative samples, with positive-to-
negative sample ratios of 1:1, 1:2, 1:5, and 1:8. Finally, we 
combined the positive and negative samples to construct 
datasets with different positive-to-negative ratios.

For the CCLE dataset, this study accessed MC, GE, 
and DM profiles as well as pharmacological profiling files 

from the Broad DepMap Portal. The processing steps 
for CDPs in GDSC were followed to extract 9242 CDPs, 
which consisted of 401 cancer cell lines and 24 drugs, 
with IC50 values transformed via natural logarithm. For 
the TCGA dataset, a total of 7675 patients with multi-
omics profiles, including MC (MC3 gene-level non-silent 
mutation), GE (Illumina HiSeq), and DM (Methyla-
tion 450  k) were obtained from UCSC Cancer Genome 
Browser Xena [63] using TCGA patient ID. Due to dif-
ferences in the feature dimensions of MC, GE, and DM 
between CCLE, TCGA, and GDSC, the features of CCLE 
and TCGA were aligned with those of GDSC. Standardi-
zation of GE and DM profiled across different platforms 
was ensured through z-score normalization.

Data segmentation strategies
We employed tenfold cross-validation (10-CV) to evalu-
ate TransCDR’s generalizability comprehensively. Data-
sets were divided based on 5 strategies: warm start, cold 
drug, cold scaffold, cold cell, and cold cell and scaffold.

1.	 Warm start: A warm start approach was adopted 
to assign a random selection of 80%, 10%, and 10% 
of the CDRs to the training, validation, and testing 
sets, respectively. Notably, it was possible for a drug/
cell line from the test or validation set to also be pre-
sent in the training set. The models trained using the 
warm start strategy were then employed to predict 
the missing IC50 values in the GDSC dataset.

2.	 Cold drug: Drugs present in the test/validation set 
were carefully excluded from the training set. Among 
the drug-associated CDRs, a random selection of 
80% (180) drugs were assigned to the training set, 
10% (22) to the validation set, and the remaining 
CDRs with 10% (23) drugs were designated for the 
test set. This experimental design aimed to assess 
the model’s performance on unforeseen drugs. It was 
important to note that despite these efforts, there 
may be instances where different drugs share similar 
scaffolds, resulting in scaffold overlap between train, 
validation, and test data. Consequently, this overlap 
may potentially overestimate the generalization abil-
ity of the CDR model to novel drugs.

3.	 Cold scaffold: First, we utilized the MurckoScaf-
foldSmiles function from the RDKit library to extract 
the Murcko scaffold of each drug. Then, we grouped 
the drugs based on their shared Murcko scaffolds. 
Next, we partitioned these Murcko scaffolds into 
training, test, and validation sets at a ratio of 8:1:1. 
This ensures that the Murcko scaffolds present in the 
training set are not observed in the test and validation 
sets. We then selected all the drugs associated with 
the scaffolds assigned to the training set and further 
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extracted the corresponding drug-cell line pairs to 
constitute the final training set. The same approach 
was applied to construct the validation and test sets, 
where the drug-cell line pairs were selected based on 
the Murcko scaffolds assigned to the respective sets. 
This cold scaffold-based data splitting method can 
better evaluate the model’s generalization capability 
when faced with novel compound structures and reli-
ably assess the model’s performance in predicting the 
activity of new, unseen compounds.

4.	 Cold cell: First, we utilized the K-means clustering 
function from the sklearn Python package to group 
the cell lines based on the similarity of their omics 
features (concatenation of three different omics data 
in the feature dimension). We experimented with 
10, 50, 100, and 200 clusters. Taking the 10-cluster 
scenario as an example, we split the 10 cell line clus-
ters into training, validation, and test sets at a ratio 
of 8:1:1. We then selected all the cell lines belonging 
to the clusters assigned to the training set from the 
entire dataset, and extracted the corresponding cell 
line-drug pairs to constitute the final training set. The 
same approach was applied to construct the valida-
tion and test sets. We named the resulting datasets 
as dataset_10C, dataset_50C, dataset_100C, and 
dataset_200C, respectively, each containing the cor-
responding training, validation, and test sets. The 
purpose of this experiment is to investigate the mod-
el’s generalization ability to predict the drug response 
of unknown cell lines. Furthermore, the fewer the 
number of clusters, the greater the differences 
between the cell line groups. This allows us to explore 
the model’s predictive performance on cell lines with 
varying degrees of dissimilarity, which is crucial for 
assessing the model’s robustness.

5.	 Cold cell and scaffold: We adopted a data partition-
ing approach that simultaneously satisfies both cold 
cell and cold scaffold conditions. we partitioned 
drug scaffolds and 10 cell line clusters separately into 
training, validation, and test sets at an 8:1:1 ratio. 
From the entire dataset, we selected the cell line-drug 
pairs where the cell line belongs to the training set 
clusters and the scaffold belongs to the training set, 
to form the final training set. For the validation and 
test sets, we used the same approach, selecting the 
cell line-drug pairs where the cell line and scaffold 
belong to the respective set. The strictest data parti-
tioning scenario can effectively evaluate the model’s 
generalization on unseen cell lines and drug scaffold.

Overall architecture of TransCDR
We proposed TransCDR, an end-to-end deep learning 
model that employed drugs’ chemical structures and cell 
lines’ multi-omics data to predict drug responses. Tran-
sCDR consisted of two prediction modes: regression 
for predicting IC50 values and classification for predict-
ing drug sensitivity or resistance on cell lines. The model 
was composed of four main components (Fig. 1): (1) We 
employed ChemBERTa, a pre-trained model, to learn 
drugs’ representations from SMILES strings, gin_super-
vised_masking, another pre-trained model, to learn 
drugs’ molecular graph representations, and a stacked 
full connected (FC) layers module to acquire high-
dimensional features from ECFPs. We opted not to fine-
tune the pre-trained models, instead utilizing them as 
feature extractors to obtain embeddings of drugs’ struc-
tures. This approach leveraged transfer learning, where 
the pre-trained models were employed to extract gener-
alizable features that can be adapted to our specific task. 
(2) We used three FCs to learn numerical representations 
of MC, GE, and DM data. (3) These drug and cell line 
representations were fused in a fusion module, a stacked 
multi-head attention layer module with 6 layers and 8 
heads. The fusion module integrated multi-modality fea-
tures of drugs and cell lines. (4) A regression/classifica-
tion network with four FCs used fusion representations 
to predict drug responses. The components above of 
TransCDR were further elaborated in the subsequent 
paragraphs.

Drug representations
We employed three drug encoders to acquire numerical 
representations from the three basic molecular notations 
(S, G, and F), followed by applying three notation-spe-
cific networks that extracted 256-dimension features 
from the numerical representations. Given the relatively 
small number of drugs in our dataset, we determined that 
using the pre-trained models as feature extractors was 
more suitable, as fine-tuning would likely result in over-
fitting and require additional training time and computa-
tional resources.

Sequence representation
We utilized the SMILES format to represent drugs, 
which involved a series of characters indicating atom 
and bond symbols and a few grammar rules resembling 
natural language. To this end, we proposed employ-
ing a pre-trained BERT-like model called ChemBERTa 
to acquire the numerical representations from SMILES 
strings. ChemBERTa [64] is pre-trained on 10 M SMILES 
strings from PubChem using the masked language mod-
eling approach. Figure  1 displays the specifications of 
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the sequence representation module used in our experi-
ments. Subsequently, the SMILE string was tokenized 
into sub-word token strings using the Byte Pair Encoding 
tokenizer and then converted into token IDs with a maxi-
mum sequence length of 512. Next, the token IDs were 
inputted into the pre-trained ChemBERTa to obtain the 
sequence representation. The numeric representation of 
a SMILES string is computed as follows:

where T  indicates the token IDs of a SMILES string 
T = {t1, t2, . . . , t512} , and hs represents the learned 
numeric representation of the SMILES, with a dimension 
of 768. The ChemBERTa and tokenizer were downloaded 
from HuggingFace [65]. Furthermore, we extracted fea-
tures from the numeric representations utilizing a neu-
ral network, with two hidden layers comprising 1024 and 
256 neural units, respectively. Every layer is formulated 
according to the following equation:

where Wi and bi represent learnable matrices. The out-
put size of the network is set to 256 to facilitate fusion 
operation.

Graph representation
The recent emergence and success of GNNs have inspired 
their application to drug representations. Specifically, we 
represented drugs as molecular graphs as G = (V ,E) , 
where V  denotes the atoms, and E denotes the chemi-
cal bonds node. Each node v ∈ V  is associated with node 
features hv and each edge (u, v) ∈ E is associated with 
edge features euv

where v represents the target node, u represents the 
neighboring node of v , and euv denotes the weight 
assigned to the edge from u to v . The model includes a 
learnable parameter ǫ and employs hlv , the node repre-
sentation of layer l , and hG , the graph representation. 
The pre-trained GIN model, gin_supervised_masking, 
performed well in learning local and global representa-
tions at the individual node and whole graph level. To 

(1)T = tokenizer(SMILES)

(2)hs = ChemBERTa(T )
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l
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∑
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learn the appropriate representations with a dimension 
of 300 from molecular graphs, we applied a neural net-
work with 2 hidden layers to extract features from these 
representations.

Fingerprint representation
The topological fingerprints of drugs were captured using 
ECFP representations [66] based on Morgan’s algorithm 
with RDKit. Specifically, each atom was assigned a unique 
integer identifier and updated to represent larger circular 
substructures with a radius of 2. The final substructures 
were hashed into a binary vector with a length of 1,024, 
defined as FP = {fp1, fp2, . . . , fp1024} , where fpi ∈ {0,1} . 
ECFP features were also extracted using a neural network 
with 2 hidden layers.

TransCDR variants without pre‑training
To examine the effectiveness of transfer learning, we 
replaced the pre-trained drug representation modules, 
namely ChemBERTa and gin_supervised_masking, with 
non-pre-trained modules, including CNN, RNN, Atten-
tiveFP, NeuralFP, and ECFP. All parameters were initial-
ized randomly and subsequently learned from scratch 
through a back-propagation algorithm. One-hot encod-
ing was used to represent drugs in CNN and RNN, 
whereas AttentiveFP and NeuralFP represented drugs as 
pre-defined graph structures with atomic and bond fea-
tures. The drug module architecture was identical to that 
of DeepPurpose [67].

Cell line representations
We employed a late fusion strategy to process high-
dimensional and heterogeneous omics data and capture 
complex relationships from mutation and copy number 
aberration, gene expression, and DNA methylation pro-
files. We used omics-specific networks to extract features 
of cell lines from each omics and fuse these 3 types of 
features using multi-head attention. The fully-connected 
networks had 2 hidden layers with 1024 and 256 neural 
units. We mapped the 3 types of omics data into a latent 
space with an embedded dimension fixed at 256.

where hGE , hMC , and hDM ∈ R
n∗d , d = 256, and n is the 

batch size.

(7)hMC = NetworkMC(XMC)

(8)hGE = NetworkGE(XGE)

(9)hDM = NetworkDM(XDM)
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Multi‑head attention for feature fusion
We proposed utilizing the multi-head attention mecha-
nism to model the relationships between drug features (i.e., 
sequences, graphs, and ECFPs) and cell line features (i.e., 
MC, GE, and DM). Initially introduced in Transformer 
[68], the multi-head attention method has been widely 
adopted for multi-modality fusion [69, 70]. Specifically, the 
attention module mapped a query and a set of key-value 
pairs to an output generated as a weighted sum of the val-
ues. The attention is formulated as follows:

where Q,K ,V ∈ R
n∗6∗dk , derived from the concatenation 

of 3 drug and 3 cell line features, n is the batch size, dk 
represents the feature dimension, and T is a transpose 
operation. To learn the features from distinct representa-
tion subspaces, we projected the Q , K  , and V  h times, and 
calculated the multi-head attention function as follows:

(10)Attention(Q,K ,V ) = softmax(
QKT

√

dk
)V
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are learnable matrices, h is set at 8, dk =
d

h
=

256

8
= 32.

The multi-head attention mechanism was the pri-
mary constituent in constructing the fusion module of 
TransCDR. More specifically, the fusion module con-
sisted of 6 identical multi-head attention layers. The 
output of this module was then flattened and incorpo-
rated into a regression module. Our study delved into 
the inquiry of 3 attention modules, namely self-atten-
tion, drug-cell line attention (DCA), and cell line-drug 
attention (CDA) (Fig. 8). First, we created a single input 
matrix that contains information from both domains 
by concatenating the drug and cell line features. This 
allowed the multi-head attention mechanism to com-
pute attention weights for each feature, which indi-
cated the importance of that feature relative to others. 
For example, in the self-attention case, the attention 
weights were computed for each of the 6 features (3 
drug and 3 cell line features). This enabled the model to 
learn to weigh the importance of each feature based on 
its relevance to the prediction task, ultimately improv-
ing model performance.

(14)
MultiHeadAtt(Q,K ,V ) = CONCAT(head1, head2, . . . , headn)W

O

(15)headi = Attention(Qi,Ki,Vi)

Fig. 8  Illustration of the three attention modules employed in this study. A Self-attention: a module concatenates drug and cell line representations 
to serve as the Q, K, and V parameters. B Drug-cell line attention: Q denotes the drug representations, and K and V correspond to the cell line 
representations. C Cell line-drug attention: Q denotes the cell line representations, and K and V correspond to the drug representations
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Prediction module
The prediction module comprised a four-layer neural 
network incorporating rectified linear unit (ReLU) acti-
vation functions and dropout layers characterized by a 
dropout rate of 0.1. The output value pertained to a cell 
line’s predicted drug response/sensitive state. To train 
regression/classification models, we adopted either the 
mean squared error (MSE) or binary cross entropy (BCE) 
loss function, which we subsequently back-propagated to 
the network and then updated all parameters end-to-end.

Performance metrics
For the regression experiments predicting ln(IC50) values 
of drugs and cell lines, we assessed TransCDR’s perfor-
mance using 4 evaluation measures: root mean square 
error (RMSE), Pearson correlation coefficient (PC), 
Spearman’s rank correlation coefficient (SC), and con-
cordance index (C-index) [25]. RMSE was used to calcu-
late the difference between predicted and ground truth 
IC50 values:

where N denotes the size of the test set. yi and ỹi repre-
sent the ground truth and predicted IC50 values, respec-
tively. PC and SC measured the linear and rank-based 
correlations between ground truth and predicted IC50 
values across all test samples. Additionally, we evaluated 
TransCDR’s predictions using the C-index across all test 
samples. Upon deploying the trained model to predict 
CDRs in the GDSC and CCLE datasets, we evaluated 
its predictive performance across diverse cell types and 
drugs by calculating the PC and SC and the C-index for 
individual cell lines or drugs.

For the classification experiments, we evaluated the 
performance of each method using the area under the 
receiver operating characteristics (AUROC) and the Area 
Under the Precision-Recall (AUPR) curves across all test 

(16)RMSE =

√

1

N

∑

(yi − ỹi)
2

samples. AUPR was used as the primary metric, espe-
cially when negative samples were much more extensive 
than positive ones [71].

Lastly, we employed the two-sided Wilcoxon rank sum 
test with a significance threshold 0.05 to demonstrate the 
significant performance difference between TransCDR 
and other compared models. We reported the mean 
and standard deviation of metrics obtained by executing 
10-CV for each method.

GSEA
Performing GSEA on the omics data of patients from 
TCGA can offer valuable biological insight into Tran-
sCDR. We employed the trained TransCDR classifica-
tion model to evaluate 225 drugs on 7675 patients with 
the available 3 omics profiles from TCGA. For each drug, 
patients were ranked based on their prediction score, and 
the top and bottom 5% (384 of each) were classified as 
drug-sensitive and drug-resistant, respectively (Fig.  9). 
The difference in predicted score between drug-sensi-
tive and drug-resistant patients was calculated using the 
formula:

Furthermore, we sorted Diff drug in descending order to 
further identify the top 10 drugs to analyze the biological 
mechanisms underlying drug sensitivity/resistance. We 
calculated the log2 fold change (log2FC) of genes for each 
drug between drug-sensitive and resistant patients:

where Xsen and Xres represent the gene-wise mean 
expression levels for the drug-sensitive and drug-resist-
ant patient cohorts, respectively. We conducted GSEA 
on the differentially expressed genes with log2FC using 
the clusterProfiler R package and Molecular Signature 
Database v2023, which contains 33,591 gene sets across 

(17)Diff drug = Ssen − Sres

(18)log2FC = log2(Xsen/Xres)

Fig. 9  The workflow of GSEA. The patients are classified into drug-sensitive or drug-resistant groups using the TransCDR classification model. The 
GSEA method is employed to identify pathways that are significantly enriched
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9 major collections. Gene sets were significantly enriched 
if they had both Benjamini–Hochberg corrected p-value 
and FDR q-value < 0.01 and |NES|≥ 1.9.

Implementation details
All models based on neural networks, including Tran-
sCDR, DeepTTA, GraphDRP, TGSA, DRPreter, and 
TransCDR varieties, were developed using Pytorch. The 
training process was limited to 100 epochs for all train-
ing sets and models. The Adam optimizer with a learn-
ing rate of 10–5 was used to update the model parameters 
during the back-propagation process. The batch size 
was 64, MSELoss was employed as the loss function for 
regression models, and BCELoss for classification mod-
els. A dropout rate of 0.1 was specified, and the valida-
tion set was used to fine-tune hyperparameters and stop 
the training process. All models employed early stopping 
to prevent overfitting. The specific procedure is as fol-
lows: after each epoch of training, the model’s MSE on 
the validation set is calculated. If the current MSE is less 
than the best MSE, the current model is retained as the 
best model, and the best MSE is updated to the current 
MSE. If the current MSE is greater than the best MSE, the 
training process is terminated, and the best model is the 
one retained from the previous iteration. The TransCDR 
further improves upon early stopping by introducing a 
more stringent criterion, where training is terminated if 
the best MSE does not update for 5 consecutive epochs, 
thereby enabling the model to converge more effectively 
to the optimal solution. For specific implementation 
details, please refer to the original code repositories for 
these models.

TransCDR: https://​github.​com/​Xiaoq​iongX​ia/​Trans​
CDR;

DeepTTA: https://​github.​com/​jiang​likun/​DeepT​TC;
GraphDRP: https://​github.​com/​hauld​hut/​Graph​DRP;
TGSA: https://​github.​com/​violet-​sto/​TGSA;
DRPreter: https://​github.​com/​babal​ing/​DRPre​ter; and.
DeepCDR: https://​github.​com/​kimmo​1019/​DeepC​DR.
All experiments were conducted on Tesla A100 GPUs 

with 40 GB of memory. GSEA was conducted on RStu-
dio. For further details, please refer to the respective 
GitHub repository: https://​github.​com/​Xiaoq​iongX​ia/​
Trans​CDR and https://​doi.​org/​10.​5281/​zenodo.​79127​77.
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