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Abstract 

Background  In agricultural ecosystems, outbreaks of diseases are frequent and pose a significant threat to food 
security. A successful pathogen undergoes a complex and well-timed sequence of regulatory changes to avoid 
detection by the host immune system; hence, well-tuned gene regulation is essential for survival. However, the extent 
to which the regulatory polymorphisms in a pathogen population provide an adaptive advantage is poorly 
understood.

Results  We used Zymoseptoria tritici, one of the most important pathogens of wheat, to generate a genome-wide 
map of regulatory polymorphism governing gene expression. We investigated genome-wide transcription levels 
of 146 strains grown under nutrient starvation and performed expression quantitative trait loci (eQTL) mapping. 
We identified cis-eQTLs for 65.3% of all genes and the majority of all eQTL loci are within 2kb upstream and down-
stream of the transcription start site (TSS). We also show that polymorphism in different gene elements contributes 
disproportionally to gene expression variation. Investigating regulatory polymorphism in gene categories, we found 
an enrichment of regulatory variants for genes predicted to be important for fungal pathogenesis but with compara-
tively low effect size, suggesting a separate layer of gene regulation involving epigenetics. We also show that previ-
ously reported trait-associated SNPs in pathogen populations are frequently cis-regulatory variants of neighboring 
genes with implications for the trait architecture.

Conclusions  Overall, our study provides extensive evidence that single populations segregate large-scale regulatory 
variation and are likely to fuel rapid adaptation to resistant hosts and environmental change.

Keywords  Zymoseptoria tritici, Expression quantitative trait mapping, GWAS, Population genetics, Plant pathogens

Background
The control of gene expression is essential for the devel-
opment and survival of organisms. The foundation of 
gene regulation is the interaction of regulatory proteins 

with specific DNA (regulatory) sequences in the cod-
ing or non-coding regions of the genome. Transcription 
factors (TFs) modulate gene expression by binding to 
transcription factor binding sites in regulatory regions 
[1, 2]. For instance, TF binding to the promoter near the 
transcription start site (TSS) helps to initiate transcrip-
tion by forming a transcription initiation complex [3]. 
The regulatory region of a gene was thought to be usu-
ally located upstream of the TSS. However, comprehen-
sive studies across eukaryotes showed that both the 5′ 
and 3′- untranslated regions, introns, and even coding 
regions can act as regulatory sequences [4]. In addition to 
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regulatory sequences, eukaryotic gene regulation is also 
governed by chromatin structure and histones [5].

Even though core mechanisms of gene expression are 
conserved across eukaryotes, there is substantial varia-
tion in gene expression within species. Individual geno-
types can carry adaptive regulatory mutations adjusting 
gene expression to different environmental cues. In 
clinical strains of yeasts, promoter variants can cause the 
upregulation of biofilm suppressor genes and increases 
pathogenicity [6]. Different consumption rates of aspar-
tic and glutamic acid during the fermentation of yeast 
hybrids are mediated by the reduced binding affinity of 
the transcriptional activator protein (Uga3) underpinned 
by single-nucleotide polymorphisms (SNPs) in the bind-
ing region [7]. A synonymous mutation can increase the 
fitness of Pseudomonas fluorescens by increasing gene 
expression [8]. Hence, understanding how regulatory 
variation can promote adaptive evolution is important 
and requires population-scale approaches. However, 
most evidence relies on a few model organisms such as 
yeasts [9–11], Drosophila [12, 13], humans [14–16], or C. 
elegans [17] and we lack comprehensive studies of regula-
tory variation in many ecologically relevant species.

Mapping of regulatory mutations in model organisms 
generated fundamental insights into the extent of regu-
latory polymorphism and gene regulatory networks. 
SNPs, insertions, deletions, copy-number variants, and 
transposable elements (TE) can act as a genetic vari-
ant [9, 18, 19]. Genetic variants associated with mRNA 
level variation are called expression quantitative trait loci 
(eQTLs). eQTLs can be located in regulatory sequences, 
such as promoters, enhancers, and splice sites, or gene 
elements such as 5′ or 3′ UTR, exons, and introns. Most 
eQTLs are acting in cis on the neighboring genes. But 
eQTLs can also be in genes typically encoding regula-
tory proteins that interact with cis-regulatory sequences 
on the same or different chromosome (i.e., trans-eQTLs) 
[11, 20, 21]. Species differ in their organization of regula-
tory regions. For instance, in yeasts, regulatory variants 
are enriched upstream of the TSS (i.e., the promoter) 
and 3′UTR whereas in human and Drosophila SNPs 
located near the TSS and in the 5′UTRs are more likely 
to be eQTLs [9, 22]. Cis-eQTLs tend to be more common 
and have larger effect sizes on gene expression variation 
than trans-eQTLs. Exceptions include for example the 
plant pathogenic fungi Botrytis cinerea and Coprinopsis 
cinerea [23–25]. Plant pathogens often harbor also poly-
morphism for gene expression during pathogenesis with 
likely strong selective advantages [26–29].

Plant pathogens cope with multiple environmental 
stressors over the life cycle with well-timed sequences 
of regulatory changes. During plant infection, pathogens 
tightly control gene expression to circumvent recognition 

by the host [30–33]. Pathogens secrete effectors (i.e., 
small-secreted proteins) at the onset of host infection 
serving to manipulate the host cell biology, repress host 
immune responses, or shield the pathogen to support 
growth and colonization [34–37]. Because of their prime 
role during infection, effector gene expression is highly 
upregulated upon contact with the host [30]. Carbo-
hydrate-active enzymes (CAZyme) are a second major 
component of fungal pathogenicity and serve to break 
down plant cell wall components to aid host colonization. 
Zymoseptoria tritici, a major pathogen of wheat, shows 
evidence for intra-specific regulatory variation and high 
genetic diversity from single field populations to conti-
nents [38, 39]. Populations show a rapid decay in linkage 
disequilibrium which helps increase the power of map-
ping approaches and narrows down associations [40–42]. 
The insertion of a TE led to the downregulation of a rec-
ognized effector gene and enabled the strain to evade 
recognition by the host [43]. Similarly, differences in 
the production of melanin were shown to be controlled 
by epigenetic regulation of nearby TEs underlining the 
significance of regulatory variants associated with gene 
expression variation within pathogen populations [44, 
45]. TE-associated polymorphisms and effects on gene 
expression are widespread in the genome and underpin 
phenotypic trait variation even within single field popula-
tions [46, 47]

In this study, we map regulatory variation at the 
genome-wide scale in the fungal pathogen of wheat Z. 
tritici under controlled culture conditions. We associate 
variation in gene transcription levels with genetic vari-
ation from strains collected from a highly diverse field 
population. We assess cis and trans-regulatory variation 
segregating for different gene functions and genomic 
locations. Furthermore, we test whether different func-
tional gene categories important for pathogenesis show 
differences in the level of segregating regulatory varia-
tion. Finally, we analyze contributions of regulatory vari-
ations on phenotypic trait variation within the species.

Results
Polymorphism analyses of the mapping population
We analyzed 146 Z. tritici isolates from a field population 
in Switzerland using whole-genome and transcriptome 
sequencing [38, 46]. Variant calling on whole-genome 
sequences of the mapping population identified 543,046 
SNPs and 39,356 indels after quality filtering. The isolates 
were highly diverse compared to the worldwide diversity 
of the pathogen (Fig. 1A). We identified a strong skew of 
minor allele frequencies towards rare variants consist-
ent with a large, recombining population (Additional 
file 1: Fig. S1). A principal component analysis of genetic 
variants showed no evidence for population substructure 
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among the analyzed isolates with only 2% of the cumula-
tive variance explained by PC1 (Fig. 1B, Additional file 1: 
Fig. S2). We quantified genome-wide transcription lev-
els of the 146 Z. tritici isolates under nutrient starvation 
conditions (Vogel’s Medium N (Minimal) [48] modified 
as ammonium nitrate replaced with potassium nitrate 
and ammonium phosphate [49] without sucrose and 
agarose). The starvation condition stimulates mycelial 
growth and induces transcriptomic changes resembling 
early plant infection stages [43]. A PCA of gene expres-
sion showed minor clustering according to culturing 
and RNA collection batches and cumulative variance 
explained by PC1 was around 10% (Fig.  1C, Additional 
file  1: Fig. S3). The population showed high expression 
variation between different gene categories important for 
pathogenesis (Fig.  1D). To account for heterogeneity in 
the mapping population, we included the first PC from 
the genetic substructure analysis, as well as PCs 1–10 
from the gene expression analyses as covariates in the 

genome-wide mapping (Additional file 1: Fig. S3). To cor-
rect for the batch effect in gene expression, we included 
the RNA sequencing batch as a random effect in the 
association mapping analyses (Fig. 1C).

Genome‑wide regulatory variation
To identify cis-regulatory variation, we associated the 
effect of polymorphisms around TSS to gene expression 
variation of the gene. The cis window comprises both 5 
kb from the TSS upstream and downstream. In the com-
pact genome of Z. tritici, this cis window covers most of 
the gene length (mean gene length ~ 1.6kb) and avoids 
significant overlap with neighboring genes (mean inter-
genic distance ~ 1.7kb; Fig.  2A). We observed that the 
majority of the significant cis-eQTLs mapped near the 
10kb window around TSS even with an increase in cis 
window to 25kb from the TSS (Additional file 1: Fig. S4). 
We identified 11,083 cis-eQTLs (FDR > 5%) across the 
genome with 65.3% (n = 7396) of the genes showing at 

Fig. 1  Genetic diversity of the mapping population. A Unrooted phylogenetic network of the mapping population and representative isolates 
from a global collection of Z. tritici populations (n = 146). B Principal component analysis of genetic variation within the mapping population. 
C Principal component analysis of gene expression in the mapping population. Colors differentiate culture batches. D Coefficient of gene 
expression variation against the RPKM normalized values of gene expression (log2-transformed). Colors indicate different gene categories relevant 
for pathogenesis
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least one cis-eQTL (Fig. 2B, Additional file 2: Table S1). 
Among genes with a mapped cis-eQTL, 61.2% of the 
genes show a single cis-eQTL, a further 29.3, 7.7, and 
1.3% show two, three, and four cis-eQTL, respectively 
(Additional file 1: Fig. S5). The proportion of genes with 
at least one mapped eQTL was substantially higher on 
core chromosomes compared to accessory chromosomes 
(Fig. 2C).

Contribution of gene features to regulatory variation
We analyzed whether cis-eQTL were enriched in spe-
cific gene elements. We observed varying densities of 
cis-eQTLs in the coding sequence, 3′, 5′UTR, intron, 
upstream of TSS, and downstream of TES respectively 
(Fig.  3A, B) with a higher density of cis-eQTLs in the 
coding sequence and an increase in density towards the 
3′ end. To account for variation in SNP densities across 
the gene element, we assessed the enrichment of SNPs 
being mapped as an eQTL in different gene elements. We 

found an enrichment of cis-eQTL upstream of the TSS, 
5′ UTR, and 3′UTR, regardless of the variant category 
(Fig. 3C). In contrast to the enrichment pattern, the effect 
size is higher for cis-eQTLs mapped in exons and introns. 
We found no significant difference in effect size for syn-
onymous and non-synonymous mutation in exonic cis-
eQTLs (Additional file  1: Fig. S6). Cis-eQTLs mapped 
to indels within introns showed a higher effect size than 
other cis-eQTLs (Fig. 3D).

Furthermore, we assessed SNPs mapped as cis-eQTLs 
between different gene categories encoding essential 
protein functions for plant pathogens to successfully 
infect and exploit host tissue. We selected gene catego-
ries encoding cell wall-degrading enzymes (CAZymes), 
genes encoding predicted effectors (predicted EffectorP 
v 2.0 [50]), secondary metabolite gene clusters [51], 
major facilitator superfamily (MFS) genes, and genes 
highly upregulated during plant infection [31]. We 
analyzed the coefficient of gene expression variation 
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(CV) across these gene categories and found that genes 
encoding effectors have higher CV than other gene 
categories whereas genes highly expressed in planta 
showed the least expression variation (Fig.  4A). The 
proportion of genes with at least one mapped eQTL 
is lower for genes with high expression in planta 
(48%) followed by core biosynthetic genes of second-
ary metabolite gene clusters (54%), genes encoding 
candidate effectors (55%), genes encoding MFS trans-
porters (62%) and genes encoding CAZymes (67%) 
(Fig. 4B). Highly expressed genes in planta infection are 
more likely to have at least one cis-eQTL (95% confi-
dence interval; Fig.  4C) but with comparatively lower 
effect size (Fig.  4D). We hypothesize that epigenetic 

regulation might be more prevalent than regulatory 
polymorphism in genes encoding effectors and highly 
expressed genes during plant infection. To test this, 
we investigated the coverage of different histone marks 
in the cis window of these gene categories in the ref-
erence genome. We observed a higher coverage of 
euchromatin histone marks H3K4m2 in the window of 
genes encoding effectors and genes reported with high 
expression in planta compared to other gene categories 
(Fig. 4E). H3K4m2 histone marks tend to be involved in 
the regulation of gene expression, which supports the 
hypothesis that gene categories mapped with low effect 
size regulatory cis-eQTLs are more likely regulated by 
epigenetics rather than cis-eQTL variants.
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Networks of genes regulated by trans‑eQTLs
We performed trans-eQTL mapping to identify regu-
latory variants associated with the expression of distal 
genes using expression variation among 146 individuals. 
The full permutation pass with stringent criteria identi-
fied 20 genes regulated by trans-eQTL with high confi-
dence whereas the approximation pass with less multiple 
testing burden on trans-eQTLs reported 843 genes with 
at least one trans-eQTL (Additional file 2: Table S2, S3). 
The trans-eQTLs from the approximate pass were used 
to reconstruct genome-wide pattern of trans-eQTL 
occurrence. We found that polymorphisms on core chro-
mosomes are more likely to influence genes on core chro-
mosomes than accessory chromosomes, and trans-eQTL 

identified on accessory chromosomes are more likely to 
influence genes on core chromosome (Fig.  5A). In con-
trast to the findings for cis-eQTL occurrences, the pro-
portion of genes mapped with at least one trans-eQTL 
does not differ between core and accessory chromosomes 
(Fig.  5A). We also observed multiple trans-eQTLs from 
different chromosomes regulating a single gene implying 
a complex network of gene regulation spanning different 
chromosomes (Additional file  2: Table  S3). An interest-
ing locus reported as a trans-eQTL is a polymorphism in 
an exon of the gene 10_00067 located on chromosome 
10 associated to the expression of the gene 21_00018 
on chromosome 21 (Fig.  5B). Both genes are predicted 
to be encoding alpha-tubulin suggesting coregulation of 

Fig. 4  The proportion of cis-eQTLs identified across gene categories. A Expression variation of gene categories across gene categories. B 
Percentage of genes reported with at least one eQTL across gene categories. C Enrichment of cis-eQTLs across gene categories. D Effect size 
of high-impact eQTLs across gene categories. The red line indicates the cis-eQTL effect size of genome-wide genes. E Overlap of three different 
histone methylation marks in cis windows of different gene categories
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alpha-tubulin genes in the genome. A small proportion 
of trans-eQTLs (83 of 843) were found to be overlap-
ping with cis-eQTLs. The effect size of eQTLs mapped 
with cis and trans effects is higher than the effect size of 
eQTLs having only a cis or trans effect (Fig.  5C). These 

overlapping pairs are possibly explained by functional 
links between the cis and trans linked genes. Overlap-
ping cis and trans-eQTLs can act in opposite direction 
compensating their effects and stabilize gene expression 
levels [52]. Among overlapping cis/trans-eQTLs, 46 are 
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regulating the expression of cis and trans genes in the 
same direction, and 42 in opposite direction (Fig. 5D).

Trait‑associated SNPs are overrepresented in cis‑regulatory 
variants
How associated polymorphisms influence phenotypic 
trait variation remains often unknown. We performed 
analyses linking known variants associated with viru-
lence and fungicide resistance of the pathogen to mapped 
cis-eQTLs [53–55]. Trait-associated SNPs were enriched 
in cis-regulatory variants compared to the genomic 
background with an odds ratio of 20.82 (95% confidence 

interval 19.16–22.6). Among all analyzed traits, SNPs 
associated with azole fungicide resistance and reproduc-
tion on a wheat cultivar showed the highest degrees of 
colocalization with mapped cis-eQTLs (Fig.  6A, Addi-
tional file  1: Fig. S7). Furthermore, moderately frequent 
regulatory variants (minor allele frequency 0.15–0.2 
and 0.4–0.45) showed the highest overrepresentation 
of colocalized trait-associated SNPs (Fig. 6B,C). To esti-
mate selection pressure acting on regulatory variants, we 
assessed potential enrichment of mapped eQTLs for rare 
or common variants globally. Cis-eQTLs with low fre-
quency variants were most overrepresented (Fig. 7A). We 
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also observed an inverse relationship between the effect 
size of the cis-eQTL and the minor allele frequency of 
the top associated SNP (Fig.  7B). Hence, low frequency 
variants show the strongest effects on gene expression 
overall. A skew towards low frequency of high-impact 
regulatory variants is consistent with purifying selection 
acting against regulatory variation in the population.

Regulatory architectures of virulence and fungicide 
sensitivity‑associated genes
The eQTL mapping revealed a complex regulatory archi-
tecture of previously characterized genes important for 
the pathogenesis and fungicide resistance (Table 1, Addi-
tional file 2: Table S4). The expression of small-secreted 
proteins is coordinated by transcriptional factors and 
epigenetic regulation. ZtWor1 is an important tran-
scriptional regulator for the expression of small-secreted 
proteins [56]. We found a trans-eQTL in a gene encod-
ing the protein arginine methyltransferase 5 (PRMT5) 
associated with the expression of the transcriptional 
regulator ZtWor1 [57]. Coordinated expression of meth-
yltransferases and the transcriptional regulator of small-
secreted proteins may underpin the epigenetic regulation 
of genes encoding effectors.

Secondary metabolites also play a pivotal role in fun-
gal pathogenesis [58]. A polyketide synthase cluster on 
chromosome 13 includes a gene encoding the necrosis-
inducing protein NPP1 important for virulence in many 
fungal pathogens even though functional characteriza-
tion in Z. tritici revealed no virulence association [59]. 
We identified a polymorphism in a gene encoding a 
fungal trichothecene efflux pump (7_00175) associated 
with the expression of the gene encoding the necrosis-
inducing protein (NPP1; 13_00229). The association sup-
ports the idea that the trichothecene efflux pump acts as 
a transporter in concert with the PKS gene cluster. Azole 
fungicide sensitivity in Z. tritici can be mediated by 
multiple mechanisms including the efflux of fungicides 
by specific transporter such as ATP-binding cassette 
(ABC) transporters [60]. We identified an association 
of polymorphisms in the gene encoding the ABC trans-
porter MgATR2 within a gene encoding an MFS, which 
is a superfamily of membrane transporter proteins. These 

links underline that ABC transporter efflux functions 
may contribute to the variation in azole fungicide sensi-
tivity in populations.

Discussion
We generated the first genome-wide map of regulatory 
variants underpinning variation in gene expression in a 
fungal plant pathogen. The majority of all genes in the 
genome segregated at least one cis-eQTL in the map-
ping population derived from a single field site. Variants 
upstream of the TSS and untranslated regions were more 
likely associated with expression variation but with lower 
effect size. Pathogenicity-related genes were less likely 
associated to eQTLs consistent with epigenetic regula-
tion playing a prominent role. Phenotypic trait varia-
tion is likely governed substantially by gene expression 
variation.

We successfully identified at least one cis-eQTL for 
two-thirds of all genes indicating how broadly regulatory 
variation segregates within populations. Genes lacking 
associated regulatory variants possibly reflect statistical 
limitations in detecting small effect sizes or the relevant 
variants were fixed in the analyzed population. Moreover, 
we assessed transcriptome variation from fungi grow-
ing as mycelium in conditions inducing nutrient starva-
tion stress. Under these conditions, Z. tritici modulates 
the transcriptome to resemble early plant infection stages 
[43]. Hence, genes repressed in any genetic background 
under the tested condition are not accessible to eQTL 
mapping in our analyses. Assessing the transcriptome 
under controlled infections is feasible; however, varia-
tion in infection severity among genotypes may confound 
eQTL mapping because of the non-controlled environ-
mental effects during infection. Cis-eQTLs reported 
from other intra-species mapping studies varied from 
20% of genes in 85 diverse yeast strains [20], 28% of genes 
in the D. melanogaster genetic reference panel (DGRP) of 
39 inbred lines [12], 13% of genes in A. thaliana popula-
tions [61], 6.7% of genes in humans with 270 individuals 
from multiple populations, and 31% of the genes in 801 
European and 1032 African Americans [62–64]. Map-
ping studies differed by panel size and genetic diversity 
of the mapping population. The comparatively smaller 

Table 1  Identification of genes nearby trans-eQTL loci as well as the gene controlled by the trans-eQTL with putative functions in 
virulence or fungicide sensitivity

Gene nearby trans- eQTL Functional annotation of gene nearby trans- eQTL Gene controlled by trans-eQTL

9_00268 Gene encoding the protein arginine methyltransferase 5 (PRMT5): ZtWor1 (8_00107)

7_00175 Gene encoding a fungal trichothecene efflux pump Gene encoding the necrosis-
inducing protein NPP1 
(13_00229)

12_00203 Gene encoding the ABC transporter MgATR2 Gene encoding an MFS (1_01912)
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population size used for mapping might explain the lower 
proportion of cis-eQTLs in the populations of A. thali-
ana and DGRP lines of D. melanogaster (a representative 
sample of naturally segregating genetic variation). The 
small number of eQTLs mapped in the comparatively 
large mapping population of S. cerevisiae may stem from 
slow linkage disequilibrium decay. Population genom-
ics studies in Z. tritici reported that ~ 90% of the global 
genetic variation is found within single populations 
and with few indications of bottlenecks [38, 39, 65–67]. 
Hence, Z. tritici populations are highly amenable to the 
efficient mapping of cis-eQTLs.

A substantial minority of all genes were mapped with 
multiple eQTLs consistent with the high-resolution of 
the panel and complexity of cis-regulatory variation in 
the species. The primary regulatory variant for each gene 
was located close to the TSS and the effect of regulatory 
variants on gene expression was inversely proportional to 
the distance of the variant from the TSS. Hence, domi-
nant regulatory variants are likely binding sites and pro-
moters proximal to TSS. Indels in introns, exons, and 3′ 
UTR had stronger effects on gene expression compared 
to SNPs. Indels are more likely to disrupt the integrity of 
splice sites, RNA-binding protein motifs in 3′UTR and 
are, hence, more likely causal variants for gene expression 
variation than SNPs [68]. Indel mutations at DNA bind-
ing sites can strongly reduce the binding affinity of DNA-
binding proteins such as TFs, whereas the degenerate 
nature of DNA binding sites can balance out more eas-
ily the effects of point mutations [69]. Intronic polymor-
phisms had stronger effects on gene expression variation 
but were less likely to be identified as cis-eQTLs, which is 
consistent with stronger selective constraints on intronic 
polymorphisms. In plants such as A. thaliana, the larger 
introns can likely more effectively buffer deleterious 
effects of indel mutations [70]. Also, polymorphism in 
introns may result in alternatively spliced mRNA and 
functionally diverse proteins with possible phenotypic 
consequences [71]. The generalist plant pathogen Scle-
rotinia sclerotiorum was found to accumulate alternative 
transcript isoforms upon infection depending on the host 
identity, which could indicate alternative splicing events 
are taking place upon infection to generate function-
ally diverse secreted proteins [72]. Hence, the strength 
of constraints on regulatory or splice variants in coding 
sequences has likely consequences for the evolvability of 
gene regulation within the species.

Gene regulatory polymorphisms were unevenly distrib-
uted among functional categories of genes. eQTLs were 
underrepresented in genes encoding functions important 
for pathogenesis, i.e., effectors and secondary metabo-
lites. This observation may stem from unequal success 
in variant calling steps since genes encoding effector 

proteins tend to localize in the vicinity of TEs [73]. The 
repetitive nature of TEs may prevent the identification of 
reliable SNPs, which in turn could lead to the underesti-
mation of cis-eQTLs. In contrast to the lower proportion 
of genes mapped with eQTLs, the likelihood of a variant 
being called an eQTL is higher for variants close to the 
genes encoding effectors, secondary metabolites, and 
genes highly expressed during plant infection. However, 
effect sizes of these cis-eQTLs were comparatively low 
to eQTLs for other gene categories. This could suggest 
that gene regulation for pathogenicity-associated genes 
tends to be mediated by epigenetics rather than cis-reg-
ulatory elements. Epigenetic gene regulation can form 
long-range chromatin interactions mediated by chro-
matin state changes and can regulate the expression of 
the target gene from hundreds of kilobases away. Hence, 
silenced TEs could cause co-silencing of effectors inde-
pendent of detectable eQTLs. These chromatin inter-
actions are physical interactions of DNA mediated by 
histone methylation marks and do not require nucleotide 
variants [74]. This observation suggests the involvement 
of epigenetic regulation as a major player in effector 
gene regulation consistent with studies showing effector 
expression being influenced by TEs [43, 46].

Our trans-eQTL mapping identified only few genes 
associated with regulatory variation compared to cis-
eQTLs. A similar observation was reported in humans 
(0.3% of the genes associated with trans-eQTLs) [75] 
and recombinant inbred lines of D. melanogaster [76], 
whereas a study of 1012 yeast segregants from a cross 
between a laboratory and a wine strain reported almost 
all the expressed genes as having at least one trans-eQTL 
[77]. A lower number of genes mapped with trans-eQTLs 
than cis-eQTLs might be due to the lower mapping 
power resulting from the high multiple testing burden 
in trans-eQTL analyses. Unlike the mapping studies in S. 
cerevisiae [23] and maize [78], we identified no trans-reg-
ulatory hot spots (i.e., trans-eQTL regulating large gene 
sets). We expected core and accessory chromosomes of 
Z. tritici to show regulatory links; however, we found that 
core chromosome genes were almost exclusively regu-
lated core chromosome trans-eQTLs. This compartmen-
talization is consistent with distinct organizations of core 
and accessory chromosomes. Studies on the filamentous 
fungus Epichloë festucae [79] and D. melanogaster [80] 
both underlined that the 3D structure of the genome 
can mediate transcription and regulate gene expression. 
Hence, the Z. tritici 3D chromosomal conformation may 
allow for only few core-accessory chromosome links.

The trans-eQTLs mapped for virulence and fungicide 
sensitivity-associated genes suggested the existence of 
complex regulatory networks. The trans-regulatory pol-
ymorphism in the gene encoding a methyltransferase 
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(PRMT5) is associated with expression variation of the 
transcription factor known as a positive regulator of 
major virulence genes in the pathogen. PRMT5 mediates 
the methylation of histone arginine and plays an impor-
tant role in chromatin dynamics [57]. The coordinated 
regulation of histone methyltransferase and the regulator 
of virulence genes highlights the importance of the epi-
genetic regulation layer of effector gene regulation. The 
genes encoding secondary metabolites tend to colocal-
ize in clusters containing one or more core biosynthetic 
genes, accessory genes, major regulators, and transport-
ers [81, 82]. In our trans-eQTL mapping, we identified 
a polymorphism in an exon of the gene encoding a tri-
chothecene efflux pump and regulating the expression of 
the gene encoding the necrosis-inducing protein (NPP1). 
NPP1 is also a predicted effector suggesting that second-
ary metabolite gene clusters may be capable of coordinat-
ing gene regulation outside of the cluster. Such effects 
may include the regulation of transporters relevant for 
the transport of the secondary metabolite.

Conclusions
Gaining a mechanistic understanding how polymor-
phism identified from phenotype-genotype association 
mapping contributes to phenotypic variation is often 
challenging. Colocalization of eQTLs and trait-asso-
ciated SNPs enables more focused hypothesis-testing. 
Our colocalization approach using SNPs associated with 
virulence and fungicide sensitivity identified that pheno-
typic trait-associated SNPs were enriched for regulatory 
polymorphisms with a quarter of the SNPs colocalizing 
with mapped cis-eQTLs. This underlines that regulatory 
polymorphism is likely playing a major role in phenotypic 
trait variation. Hence, recent adaptation of the pathogen 
to hosts and the environment may have been achieved 
with substantial contributions from regulatory polymor-
phisms. Ascertaining standing variation for genetic and 
regulatory variants enables more precise predictions of 
the evolutionary potential of species.

Methods
Library preparation, genome, and transcriptome 
sequencing
Isolates of Z. tritici were collected from an experimen-
tal wheat field planted with different cultivars [38, 83] 
and grown for 10 days in yeast-sucrose broth (YSB) at 
18°C. Total genomic DNA was extracted using the QIA-
GEN DNAeasy Plant Mini Kit and the Illumina library 
was prepared using a TruSeq Nano DNA Library kit 
(Illumina, Inc.). Libraries with an insert size of ~ 550 bp 
were sequenced for a read length of 100 bp in paired-end 
mode on a HiSeq 4000 at the iGE3 sequencing platform 
(Geneva, Switzerland). For RNA sequencing, the same 

isolates were cultured in a Vogel’s Medium N (Minimal) 
[48] modified as ammonium nitrate replaced with potas-
sium nitrate and ammonium phosphate [49] without 
sucrose and agarose to induce hyphal growth [84]. Total 
RNA was isolated from the filtered mycelium after 10–15 
days using the NucleoSpin® RNA Plant and Fungi kit. 
RNA concentration and integrity were checked using a 
Qubit 2.0 Fluorometer and an Agilent 4200 TapeStation 
System, respectively. Only high-quality RNA (RIN > 8) 
was used to prepare TruSeq stranded mRNA libraries 
with a 150 bp insert size and sequenced on an Illumina 
HiSeq 4000 in the single-end mode for 100 bp.

Variant calling and filtering
DNA sequences were checked for quality using FastQC 
version 0.11.5 [85] and trimmed with trimmomatic ver-
sion 0.36 [86] to remove adapter sequences and low-qual-
ity reads with parameters ILLUMINACLIP: TruSeq3-PE.
fa:2:30:10 LEADING:3 TRAILING:3 SLIDING WIN-
DOW:4:15 MINLEN:36. Trimmed sequences were 
aligned to the Z. tritici reference genome of IPO323 [87] 
and mitochondrial sequence (accession EU090238.1) 
using Bowtie2 version 2.3.4.3 [88] with the option –
very-sensitive-local. Aligned sequences were used for 
variant calling with the HaplotypeCaller integrated in 
the Genome Analysis Toolkit (GATK) v. 4.0.11.0. [89]. 
SNPs and indels were separated using the SelectVariants 
tool. SNPs and indels were quality filtered with the Vari-
antFiltration tool. We retained SNPs with QUAL > 1000, 
AN = 20, QD > 5.0, MQ > 20.0, as well as ReadPosRank-
Sum, MQRankSum, and BaseQRankSum between − 2.0 
and 2.0. Variants passing the quality filtration were fur-
ther filtered to remove multiallelic sites using the bcftools 
(version 1.9) –norm option. After that, the variants were 
filtered to keep only sites genotyped in at least 90% of the 
individuals and rare variants (< 5%) were removed using 
VCFtools [90] and the –max-missing option and bcftools 
(version 1.9) [91] -q 0.05: minor option.

RNA‑seq analyses
RNA-seq data were checked for quality using FastQC 
(version 0.11.5) [85] and trimmed with trimmomatic ver-
sion 0.36 [86] to remove adapter sequences and low-qual-
ity reads with parameters: ILLUMINACLIP: TruSeq3-SE.
fa:2:30:10 LEADING:3 TRAILING:3 SLIDING WIN-
DOW:4:15 MINLEN:36. Trimmed sequences were 
aligned to the Z. tritici reference genome of IPO323 [87] 
using HISAT2 [92] (version 2.1.0) with the parameter “–
RNA-strandedness reverse”.

De novo transcriptome assembly and UTR prediction
For de novo transcriptome assembly, we used RNA-seq 
datasets generated for the reference isolate IPO323 from 
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different plant infection stages (1, 4, 9, 14, and 21-days 
post infection) and culture media (Czapek-Dox broth, 
potato dextrose broth) available on NCBI (accession 
numbers: ERS684130-37, ERS684123-29, ERS683735-
40, ERS6837343). We used also Illumina RNA-seq reads 
generated from minimal media grown following the 
above-described methods. For in planta RNA-seq data, 
reads were filtered by aligning to the IPO323 reference 
genome [87] to remove transcripts from wheat. Trinity 
(version v2.8.3) [93] was used for de novo transcriptome 
assembly using the –jaccard_clip parameter to reduce the 
occurrence of fused transcripts in dense fungal genomes. 
We performed de novo assembly using different sets of 
RNA-seq samples including up to a maximum of ~ 5 mil-
lion reads per dataset. Next, we used GenomeThreader 
version 1.7.1 [94] to align de novo assembled transcripts 
to the reference genome requiring a minimum alignment 
score of 0.98. Along with de novo assembled transcripts, 
we used Iso-Seq reads generated for IPO323 to improve 
UTR prediction [95]. We then checked for overlaps of 
de novo assembled transcripts and Iso-Seq reads with 
IPO323 gene models [96] using bedtools (version v2.27.1) 
[97]. Overlapping transcript sequences were further fil-
tered to remove transcripts overlapping more than one 
gene and transcripts smaller than the predicted gene 
model. After filtering, the start and end position of the 
longest predicted transcript was considered as the 5′UTR 
start and 3′UTR end of each gene.

Functional annotation of coding sequences
We retrieved existing gene annotation data for the ref-
erence strain IPO323 [96]. Genes encoding putative 
effectors were predicted using EffectorP v 2.0 [50]. Sec-
ondary metabolite gene clusters were predicted using 
antiSMASH 4.0 [51]. Genes upregulated during host 
infection were selected according to previous host 
infection transcriptome analyses [31]. Genes encoding 
cell wall-degrading enzymes were annotated based on 
matches with the Carbohydrate Active Enzymes database 
(CAZy) [98].

Mapping cis‑eQTL using permutations
We used QTLtools (version 1.1) [99] for transcriptomic 
data filtering and the mapping of eQTL. Reads mapped 
to gene models [96] were counted with the QTLtools –
quan mode. Only reads with a minimum Phred mapping 
quality > 10 were kept for further analyses. Normalization 
of the counts was done using the –rpkm option imple-
mented in the QTLtools –quan mode. Gene expres-
sion coefficients of variation (CV) were calculated as 
the standard deviation (SD) normalized by the gene 

expression mean value (CV = SD/mean). To determine 
the optimal configuration for eQTL discovery, we per-
formed eQTL mapping with 1000 permutations and 5kb 
cis windows filtering for genes with RPKM = 0. Principal 
components (PCs) explaining variance at the genotype 
and expression level were calculated using the –PCA 
mode in QTLtools. To determine the number of PCs for 
population structure correction and technical variance in 
the dataset, independent eQTL analyses were performed 
in the cis –permutation mode with 1000 permutations 
and 5kb cis windows with differing numbers of PCs. The 
permutation p-values are false discovery rate (FDR) cor-
rected to identify the top eQTL significant at a 5% FDR 
level. To map cis-eQTLs with an independent effect on 
gene expression, we used the QTLtools –cis conditional 
option and reported 5% FDR corrected eQTLs in associa-
tion with the top variant reported from –cis permutation 
analyses. For this, we have chosen a cis window of 10kb 
equidistant from the TSS.

Mapping trans‑eQTL using permutations
To map trans-eQTLs, we used the –trans mode in QTL-
tools (version 1.1). We ran the full pass mode to identify 
the top candidates of trans-eQTLs. The full permuta-
tion scheme in the QTLtools trans analysis permutes all 
expression phenotypes and genetic variants excluding the 
window defined for cis variants. We ran the nominal pass 
with the threshold of 1e − 5 excluding variants in the win-
dow of 200 kb equidistant from the start codon of each 
focal gene. Multiple testing correction was performed 
using a full permutation scheme with 100 permutations. 
We have retained trans-eQTLs if the association was sig-
nificant at a 5% FDR in at least 80% of the permutations. 
The approximation pass selected 1000 expression pheno-
types randomly, permutated expression phenotypes, and 
tested for associations against all variants as a less strin-
gent threshold to retain trans-eQTL.

Colocalizing mapped eQTLs with GWAS‑associated 
variants
To assess colocalization of eQTLs with GWAS signals, 
we used the RTC mode in QTLtools (version 1.1) [99]. 
We chose variants associated with phenotypes from 
a GWAS study based on a mapping population estab-
lished from the same wheat field [100]. We analyzed 
GWAS for fungicide resistance, virulence, and reproduc-
tion of the pathogen for colocalization with mapped cis-
eQTLs. We retained colocalized variants if the RTC score 
was > 0.9 and the linkage disequilibrium (r2) between the 
variants > 0.5.
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