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Abstract

Background: In recent years, large-scale genetic screens using the CRISPR/Cas9 system have emerged as scalable
approaches able to interrogate gene function with unprecedented efficiency and specificity in various biological
contexts. By this means, functional dependencies on both the protein-coding and noncoding genome of
numerous cell types in different organisms have been interrogated. However, screening designs vary greatly and
criteria for optimal experimental implementation and library composition are still emerging. Given their broad utility
in functionally annotating genomes, the application and interpretation of genome-scale CRISPR screens would
greatly benefit from consistent and optimal design criteria.

Results: We report advantages of conducting viability screens in selected Cas9 single-cell clones in contrast to Cas9
bulk populations. We further systematically analyzed published CRISPR screens in human cells to identify single-
guide (sg) RNAs with consistent high on-target and low off-target activity. Selected guides were collected in a
novel genome-scale sgRNA library, which efficiently identifies core and context-dependent essential genes.

Conclusion: We show how empirically designed libraries in combination with an optimized experimental design
increase the dynamic range in gene essentiality screens at reduced library coverage.
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Background
Over the past decades, genetic screens have been used
extensively to interrogate gene function in an unbiased
manner [1–3]. In recent years, CRISPR/Cas9 [4, 5] has
emerged as a scalable method to introduce targeted gene
knockouts with unprecedented efficiency and specificity.
Genetic screens with the CRISPR/Cas9 system are now
applied to probe the protein-coding and noncoding
genomes of hundreds of cell types in different organisms
[6–11]. These experiments have led to new insights into
many biological processes. Progress has been made

especially in the field of cancer genetics, where genome-
wide CRISPR screens have resulted in gene essentiality
maps for hundreds of tumor cell lines [12, 13].
Despite these advances, currently no generally accepted

design principles for sgRNA libraries [14] and large-scale
CRISPR screens exist and published experiments vary
substantially in design and performance. This is particu-
larly important as we reason that screens conducted with
high CRISPR editing efficiency based on high Cas9 and
sgRNA functionality allow screens at reduced coverage,
which substantially lowers experimental efforts and costs.
Furthermore, higher knockout efficiency is likely to in-
crease the dynamic range of CRISPR screens, which in
turn further allows to separate weak signals from screen-
ing noise and thus hit calling. In recent years, the design
of sgRNAs and CRISPR libraries was improved based on
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design rules derived from comparing the nucleotide com-
position of active and non-active guides [15–17], training
models to identify predictive features of efficiently editing
sgRNAs [18, 19] and more recently also deep learning
algorithms [20]. While these efforts have greatly improved
library performance, we reasoned that sequence predic-
tions might not always fully reflect knockout performance
and that many factors that influence sgRNA efficacy likely
remain unknown and have thus not been considered in
previous library designs. Potential further parameters
might be DNA accessibility [21–23] or the presence of
functional protein domains [24]. Therefore, we consider
using consistent and strong viability phenotypes of
sgRNAs previously used in a diverse range of cell lines to
be a powerful predictor of their functionality.
In this study, we generated a new library, termed the

Heidelberg CRISPR library as a new tool for pooled
genome-wide CRISPR/Cas9 screens. For its design, we
selected guides with consistent high on-target and low
off-target activity based on phenotypes in previously
published CRISPR screens as recorded in the Genome-
CRISPR database [25]. We show that empirical selection
of sgRNAs also prioritizes guides with high sequence
scores according to different design rules. Moreover, we
show that our library efficiently identifies core and
context-dependent essential genes by screening for
essential genes in a cell line that was not considered for
library design, the human HAP1 cell line. Screening in
Cas9 single-cell clones increased depletion phenotypes
of essential genes compared to a Cas9 bulk population,
increasing the overall dynamic range. Interestingly, the
heterogeneity of editing efficiency of individual clones in
Cas9 bulk populations seems to more strongly interfere
with editing efficiency compared to ploidy, since editing
in haploid and diploid HAP1 cells was in a similar range.
Furthermore, screening in selected single-cell clones
allowed hit calling at reduced library coverage, while es-
sential genes were overall similar in all cell populations.
We believe that empirically designed libraries will be a

useful extension to the current CRISPR/Cas9 toolkit. Our
results further suggest that clonal cell populations with
high Cas9 activity are attractive models for CRISPR/Cas9
screens at minimal library coverage, especially when no
prior information is available to inform hit calling.

Results
Data mining of sgRNA-associated phenotypes allows
empirical sgRNA design
We hypothesized that the very large number of results
from previously published CRISPR screens could be
utilized to systematically identify sgRNAs with high ac-
tivity. Specifically, we reasoned that sgRNAs with strong
and consistent effects across multiple experiments would
intrinsically combine all known and unknown

characteristics that guarantee high on-target activity. In
addition, we assumed that we could avoid sgRNAs with
off-target activity by comparing their phenotypes to
other sgRNAs targeting the same gene. To this end, we
analyzed 439 genome-scale fitness screens (negative se-
lection for viability) from GenomeCRISPR, a database
that contains sgRNA phenotypes from CRISPR screens
in human cells [6–8, 10, 12, 16, 25–30]. We excluded all
sgRNAs that could not be mapped to a protein-coding
transcript region of the latest (GRCh38.p10) human ref-
erence genome [31]. In addition to the sgRNA pheno-
types, we annotated each guide sequence with additional
information including the number of targeted tran-
scripts, the number of times the sgRNA was screened,
and the number of predicted off-targets (see “Methods”)
and their GC content.
We next aimed to identify sgRNAs with high on-target

activity (Fig. 1). To this end, we reanalyzed each of the
selected 439 screens in GenomeCRISPR using the
BAGEL software [32]. BAGEL uses reference sets of core
essential and nonessential genes [17] to compute Bayes
factors that indicate whether a gene is more likely to be
essential or nonessential. To exclude low-quality screens
from further analysis, we generated precision-recall
curves for each screen to quantify how well core and
nonessential reference genes could be separated based
on the BAGEL-derived Bayes factors [33]. We retained
all screens for which the area under the precision-recall
curve (AUC) was greater than 0.9 (406 out of 439; Add-
itional file 1: Fig. S1 A-B). We then determined essential
genes in each of these screens at 5% false discovery rate
(FDR). We labeled each sgRNA as active if its target
gene was essential according to BAGEL and if the
sgRNA was among the 20% sgRNAs with the strongest
fitness phenotypes in a screen (Fig. 1 and Fig. 2a, b).
Next, we identified and excluded sgRNAs with gene-

independent toxic phenotypes [19], which can among
other things be based on copy number amplifications.
Copy number-induced phenotypes at off-target sites are
most likely sporadic effects that occur only in individual
cell lines. In order to avoid the selection of sgRNAs
based on sporadic phenotypes, for example due to copy
number amplifications at off-target sites, we required
that an sgRNA has to have a phenotype in at least 5% of
the screens in which it was used for it to be considered
for phenotype-based selection (see “Methods” section).
GenomeCRISPR provides an “sgRNA effect” score that
indicates how strong an observed sgRNA phenotype was
in comparison to all other sgRNAs in the same screen
[25]. We grouped sgRNAs by their target genes and
scaled and centered their effect scores to identify
sgRNAs whose phenotypes strongly deviated from the
phenotypes of other sgRNAs targeting the same gene
(|sgRNA effect z-score| > 1.25). We labeled these sgRNA
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Fig. 1 Empirical design of the HD CRISPR library. Schematic illustration of the HD CRISPR library design process. sgRNA sequences that were
previously used in negative selection screens contained in the GenomeCRISPR database were annotated with information on rationally selected
sequence and phenotype features. All negative selection screens were reanalyzed with BAGEL. High-quality experiments were selected based on
how well reference core and nonessential gene sets could be separated in those screens. sgRNAs with high on-target activity were then
determined as sequences that both target an essential gene (as determined by BAGEL) and that rank among the 20% most strongly depleted
sequences in the screen. Next, sgRNAs that showed unexpected phenotypes compared to other sgRNAs targeting the same gene were flagged
as outliers with potential off-target effects. sgRNA sequences were then selected from the resulting pool of sequences to design a genome-wide
library consisting of two mutually exclusive sub-libraries A and B, prioritizing sgRNAs with high on-target and low off-target activity
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Fig. 2 (See legend on next page.)
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sequences as potentially off-targeting and excluded them
from the library design (Fig. 2c, d). When less than 8
sgRNAs meeting these criteria were available from
published libraries to target a gene, we used the CRISPR
library designer (CLD [34];) to design new sgRNAs
(Additional file 1: Fig. S1 C).
We then selected sgRNAs for a new library,

named the Heidelberg (HD) CRISPR library (Fig. 1;
Additional file 2: Table S1). This library consists of two
independent, mutually exclusive sub-libraries A and B that
each contains 4 sgRNAs per gene, targeting 18,913 and 18,
334 protein-coding genes, respectively (Fig. 1, Add-
itional file 3: File S1, Additional file 4: File S2). For selection,
we prioritized sgRNAs that showed high on-target activity
(as determined above) in a large number of screens. If no
information about sgRNA on-target activity was available
(e.g., for nonessential genes), we picked sgRNAs that target
constitutive exons with little predicted off-target effects (see
“Methods”) close to the transcription start site (Additional
file 1: Fig. S1 D-E). These selection criteria are based on the
assumption that the majority of algorithms do not inher-
ently enrich for guides with off-target effects, which we,
however, can also not exclude. Genes and their respective
sgRNAs were categorized as essential if respective sgRNAs
got depleted in at least 5% of the screens analyzed. In total,
42% of the sgRNA for libraries A and 30% of the sgRNAs
for library B met these criteria. An additional 54% of
sgRNAs for library A and 35% of sgRNAs for library B
could be empirically selected based on their uniform
phenotype for presumably mainly nonessential genes. For
only 4% of sgRNAs, de novo design was necessary (Fig. 2e).
Sub-library A contains sgRNAs that ranked best according
to our design criteria to enable high-quality screens at a
low library coverage. Sub-library B contains second-tier
sgRNAs and can be used to supplement sub-library A when
a higher sgRNA coverage is desired. After sgRNA pre-
filtering, we could select from on average 25 different
sgRNAs per gene (Additional file 1: Fig. S1 F). In the fil-
tered guide dataset, sgRNA phenotypes targeting the same

gene were diverse, resulting in a large difference of the
maximal and the minimal sgRNA effect score for the ma-
jority of genes. In contrast, our filtering criteria for guides
with high on-target and low off-target activity resulted in a
narrow distribution of guide phenotypes targeting the same
gene (Additional file 1: Fig. S1 G). As an independent evi-
dence of sgRNA performance, we further aimed to bench-
mark sgRNAs selected for the HD CRISPR library based on
commonly used sgRNA design scores. For comparison, we
used sgRNAs from the GeCKOv2, TKOv3, and Brunello li-
braries and also generated a sample of 70,000 randomly se-
lected sgRNAs from published libraries [6, 8, 16–19, 27–29,
35]. For scoring, we applied the rule set 2 design rules,
based on which the Brunello library was designed [19], as
well as the sequence score developed for the design of the
TKOv3 library [17]. As an independent metric, we also
evaluated sgRNAs using the more recently published
DeepHF score [20], an sgRNA activity prediction score
based on deep learning algorithms, which has not been
used for the design of either of the evaluated libraries. For
each of the selected scores, the two HD CRISPR sub-
libraries outperformed the GeCKOv2 library and the
randomly picked sample of published sgRNAs (Fig. 2f–h).
The performance for the rule set 2 and Hart et al. sequence
score were slightly lower for the HD CRISPR library
(median 0.59 and 0.58 for sub-libraries A and B, respect-
ively) in comparison to the Brunello and TKOv3 libraries
(median 0.65 for Brunello and 0.63 for TKOv3). Since the
HD CRISPR library has solely been designed by relying on
sgRNA-associated phenotypes but not by considering any
of these design rules, this is not surprising. However, using
the independent deep learning DeepHF scoring system,
all three empirically designed libraries (Brunello, HD
CRISPR, and TKOv3) performed similar and outperformed
GeCKOv2 and the random sample (median scores: HD
CRISPR A= 0.66; HD CRISPR B = 0.66; Brunello = 0.66;
TKOv3 = 0.67; GeCKOv2 = 0.59; Random= 0.62) (Fig. 2g).
Interestingly, sgRNAs empirically selected based on the in-
duction of a viability phenotype scored better than sgRNAs

(See figure on previous page.)
Fig. 2 Empirically selected sgRNAs in the HD CRISPR library. a Distribution of log2 fold changes for sgRNAs targeting core essential reference
genes. The blue curve represents sequences with strong on-target phenotypes. The red curve represents sgRNAs with weak on-target
phenotypes (see “Methods”). b Phenotypes of sgRNAs targeting the core essential gene NOP2 for 4 screens performed with the library described
in Wang et al. [27]. Compared to other NOP2-targeting sgRNAs, sgRNA 9 showed unexpectedly weak depletion in these experiments and was
thus labeled “ineffective”. c Distribution of log2 fold changes for sgRNAs targeting nonessential reference genes. The blue curve represents
sequences with low off-target activity. The red curve represents sgRNAs that led to unexpectedly strong phenotypes. d Phenotypes of sgRNAs
targeting the nonessential gene KRT35 in 4 screens performed with the library described in Wang et al. [27]. Unlike other KRT35-targeting sgRNAs,
sgRNA 8 consistently displayed toxic phenotypes in these experiments and was therefore marked as “toxic”. e Percentage of sgRNA sequences in
sub-libraries A (left) and B (right) that could be selected based on empirical evidence from published screening experiments. Empirical essential
sgRNAs were selected based on inducing a viability phenotype, empirical nonessential sgRNAs based on the absence of a toxic phenotype. f–h
Calculated sequence scores applying either the rule set 2 [19], the DeepHF [20] or the Hart et al. [17] algorithms. Score performance of the HD
CRISPR sub-libraries A and B was benchmarked against the libraries whose design is based on respective scores (Brunello for rule set 2, TKOv3 for
Hart et al.) if available as well as the GeCKOv2 library and a random sample of sgRNAs from published libraries. The DeepHF score was used as an
independent measure none of the investigated libraries was designed on. i–k Comparison of sgRNA scores for empirically and de novo-designed
sgRNAs within the HD CRISPR sub-libraries
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selected for nonessential genes as well as de novo designed
sgRNAs, for which only common design rules were applied
(Fig. 2i–k).

Cas9-editing efficiency can be improved by pre-selection
of highly editing single-cell clones
Next, we further addressed how Cas9 activity could be
increased to improve the sensitivity of CRISPR screens.
We asked whether knockout efficiency could be enhanced
in large screening settings by pre-selecting single-cell
clones with high Cas9 editing efficiency. Bulk populations
of transduced cells are often heterogeneous in their trans-
gene expression, largely due to differences in lentiviral in-
tegration, epigenetic silencing of exogenous DNA or the
selection process during transfection or transduction [36].
This heterogeneity can impact downstream processes
such as Cas9-editing efficiency. Indeed, a bulk population
of Cas9 expressing cells has also previously been shown to
contain clones with rare to even absent Cas9 editing effi-
ciency, which was suggested to be based on an APOBEC3
mutational signature in the Cas9 coding sequence [16].
Recently, an in-depth comparison of editing efficiency of
96 clonal Cas9 mouse embryonic stem cell lines revealed
very diverse knockout efficiencies from 0 to 100%, while
the bulk population showed about 84% knockout effi-
ciency and only few clones with editing above 95% could
be identified [37]. However, to our knowledge, no direct
comparison of pooled CRISPR viability screening per-
formance in clonal and bulk Cas9 cell lines has been done
so far.
In order to be able to assess such potential differences

in more detail, we sorted single cells from the HAP1
Cas9 bulk population and measured Cas9 editing effi-
ciency for several clones (Fig. 3a). We define editing effi-
ciency as the combination of on-target DNA cutting
efficiency and the subsequent induction of mutations by
error-prone DNA damage repair. From the sorted
clones, we selected two single-cell clones, henceforth re-
ferred to as SCC11 and SCC12, with high Cas9 editing
activity. For our knockout experiments, we generated an
sgRNA expression vector harboring an improved sgRNA
scaffold [16, 38]. The vector further features a stuffer se-
quence encoding GFP and a lentiviral backbone similar
to the previously published pLCKO vector [8]. Cloning
of sgRNA sequences results in removal of the GFP
stuffer (Additional file 5: Fig. S2 A), which allows to
estimate the extent of remaining non-digested vector
backbone in library preparations and thus cloning effi-
ciency (Additional file 5: Fig. S2 B-C), while upon trans-
duction the stuffer does not interfere with assays where
GFP is used as a readout (Additional file 5: Fig. S2 B).
The functionality of the HDCRISPRv1 vector was con-
firmed by knockout of the surface marker gene CD81 in
HAP1 Cas9 bulk cells (Additional file 5: Fig. S2 D,

Additional file 6: Table S2). Using this vector to compare
knockout efficiency in Cas9 bulk and single-cell clones,
knockout of the core essential POLR2E gene led to much
stronger depletion of viable cells in SCC11 and SCC12
compared to the Cas9 bulk population (Fig. 3b). Simi-
larly, when addressing the amount of remaining surface
protein upon knockout of CD46 using two individual
guides, depletion was 20 to 30% stronger in single-cell
clones compared to the bulk population (Fig. 3c;
Additional file 6: Table S2). We considered it possible
that editing efficiency might be affected by the ploidy of
the different cell lines. While HAP1 cells are a haploid
cell line [39], their haploid state tends to be unstable. In
a mixed population of haploid and diploid HAP1 cells,
diploid cells have been shown to enrich over time due to
a proliferative advantage, while the haploid state can be
prolonged in clonal populations starting from a single
haploid cell [40]. In line with this, we identified a larger
proportion of clearly diploid cells in the HAP1 Cas9 bulk
population compared to the two single-cell clones (~
11.5% definite diploid in HAP1 Cas9 bulk vs. ~ 1.5% in
HAP1 Cas9 SCC11 and ~ 6.3% in HAP1 Cas9 SCC12)
(Additional file 7: Fig. S3 A). To rule out that ploidy has
a major impact on editing efficiency in the HAP1 cell
line, we sorted enriched haploid (68.2% for SCC11 and
66.8% for SCC12) and diploid populations (43.2% and
34.2% for SCC11 and SCC12, respectively) from the
HAP1 Cas9 SCC11 and SCC12 cell lines. Subsequently,
we directly compared editing efficiency in enriched hap-
loid and diploid populations originating from the same
single-cell clone. While we indeed observed a slightly
lower editing efficiency in diploid cells compared to hap-
loid controls, this difference was smaller than on average
6% for both cell lines and sgRNAs (Additional file 7: Fig.
S3 B-C). This argues for other factors than ploidy to be
the main drivers of differences in editing efficiency.

The HD CRISPR library identifies core and nonessential
genes at high precision
In order to address screening performance of the HD
CRISPR library, the sub-libraries A and B were cloned
independently into the corresponding HDCRISPRv1
vector. Quality controls of the resulting plasmid prepara-
tions revealed a narrow sgRNA distribution with negli-
gible background of non-digested vector backbone
(Additional file 8: Fig. S4). Both libraries were screened
in parallel in the HAP1 Cas9 bulk population and the
two Cas9 single-cell clones in two independent replicates
for 14 days to further assess the impact of Cas9 editing
efficiency and the extent of clonality effects on hit calling
(Fig. 4a; Additional file 9: Fig. S5 A). Since our reference
set of published CRISPR screens used for library design
did not include any screen conducted in HAP1 cells, we
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considered this cell line to be a suitable neutral model to
evaluate library performance.
Comparing fold changes of sgRNAs targeting genes

comprising a core essential and a nonessential reference
gene set [17] confirmed strong loss of sgRNAs targeting
essential genes over the course of screening for both
libraries and all cell lines, while the representation of
nonessential genes remained nearly unchanged to the
plasmid library, validating our sgRNA selection strategy
(Fig. 4b; Additional file 10: Table S3). As expected, de-
pletion of sgRNAs targeting essential genes was stronger
in selected single-cell clones compared to the bulk popu-
lation and screening in single-cell clones furthermore
strongly improved replicate correlation in comparison to

screening in HAP1 Cas9 bulk cells (Additional file 9: Fig.
S5 A). This confirms our assumption that a better reso-
lution can be achieved upon screening in single-cell
clones pre-selected for strong Cas9 editing efficiency. To
further address library performance, we computed the
area under the curve (AUC) for the empirical cumulative
distribution function using core essential, nonessential
[17, 33], and non-targeting reference gene sets (Fig. 4c).
Effective screens are supposed to have an AUC value ≥
0.5 for sgRNAs targeting essential genes and an AUC
value ≥ 0.5 for sgRNAs targeting nonessential genes or
designed as non-targeting controls [14], indicating that
respective sgRNAs either get preferentially depleted
(AUC ≥ 0.5) or remain (AUC ≥ 0.5) over the course of

Fig. 3 Selected Cas9-expressing single cell clones show stronger editing efficiency compared to a Cas9 bulk population. a Workflow for the
selection of Cas9 single-cell clones (SCCs). SCCs were sorted from the HAP1 Cas9 bulk population and further characterized. Cas9 editing was
assessed by cell surface marker knockout followed by FACS staining and cell viability upon knockout of a core essential gene. Two highly editing
single-cell clones (SCC11 and SCC12) were selected for further experiments. b HAP1 Cas9 bulk, Cas9 SCC11, and Cas9 SCC12 cells were
transfected with the HDCRISPRv1 vector encoding an sgRNA targeting either the safe harbor locus AAVS1 as a control or the core essential gene
RNA Polymerase 2 subunit E (POLR2E). Editing efficiency based on cell viability of sgPOLR2E-transfected cells in comparison to sgAAVS1 control
cells was addressed by crystal violet staining. The number of surviving cells was strongly reduced in cells transfected with an sgRNA directed
against POLR2E (n = 3 for each cell line and sgRNA). c Editing efficiency was furthermore assessed upon transduction of HAP1 Cas9 bulk, Cas9
SCC11, and Cas9 SCC12 cells with the HDCRISPRv1 vector expressing sgRNAs targeting the surface marker CD46, followed by FACS staining of
residual CD46 protein to address knockout efficiency. Antibody staining of the non-edited cell lines was used as a control. Lines represent the
mean of independent measurements (n = 3 for each cell line and condition)
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Fig. 4 (See legend on next page.)
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screening. We obtained AUC values close to 1 for both
independent replicates of all screens when analyzing
sgRNAs targeting essential genes, and AUC values below
0.5 for sgRNAs designed for nonessential genes and as
non-targeting controls (Fig. 4d), indicating that our se-
lection strategy for core and nonessential genes was suc-
cessful. Moreover, differences in the maximal and the
minimal log2 fold change for guides targeting the same
gene were small with a median difference less than 1 for
all individual screens (Additional file 9: Fig. S5 B). To
benchmark our results with other screens conducted in
HAP1 cells, we compared genes identified to be essential
in the HAP1 Cas9 bulk population using either the HD
CRISPR sub-libraries A or B with published data from
gene essentiality screens conducted in HAP1 cells using
either the TKOv1 or TKOv3 libraries (Hart et al., [8]) or
a gene trap screen [41]. The intersection of hits from all
screens was 926 genes for the HD CRISPR library A and
878 genes for the HD CRISPR library B (Fig. 4e), and
computed Bayes factors for the HAP1 Cas9 bulk screens
were highly correlated with those calculated for the
TKOv1 and TKOv3 CRISPR screens conducted in
HAP1 cells (Additional file 9: Fig. S5 D-E), suggesting
that hits from previous screens—including HAP1 context-
dependent essential genes—can be re-discovered using the
HD CRISPR library. Moreover, precision-recall analysis
for reference core essential and nonessential genes sets
(Hart et al. [17]) was comparable to screens conducted
using the TKOv3 library and slightly better to the TKOv1
library in HAP1 cells (Additional file 9: Fig. S5 C).
We furthermore compared hit calling of essential

genes using different analysis methods, BAGEL and
MAGeCK RRA. Using BAGEL, differences in the num-
ber of essential genes identified were marginal for both,
increasing numbers of sgRNAs per gene (2–8) and
screening in either the Cas9 bulk population or one of
the two single-cell clones (Fig. 4f). This is likely due to
the fact that BAGEL uses prior knowledge for gene essenti-
ality hit calling. In contrast, for analysis software, which
does not require prior information such as MAGeCK RRA
or gscreend [42, 43], an increasing number of sgRNAs per

gene also allowed the identification of more hits and single-
cell clones with an enhanced editing efficiency were super-
ior for hit calling in comparison to the bulk population
(Additional file 11: Fig. S6 A-C). Overall, comparing genes
identified to be essential using either BAGEL or MAGECK
RRE revealed strong agreement with few essential genes
private to each software (Additional file 11: Fig. S6 D).
In a final step, we asked how differences in editing effi-

ciency, the number of sgRNAs per gene, and potential
clonality effects might affect the determination of gene
essentiality. We were especially interested in differences
in gene essentiality between the Cas9 bulk cell line and
the two Cas9 single-cell clones, since the generation of
single-cell clones from bulk populations forces cells to
go through a genetic bottleneck, which might favor cer-
tain genetic alterations [44] and thus dependencies.
Therefore, we used BAGEL [32] to analyze depleted
genes in each HAP1 cell line using the combined HD
CRISPR library (8 sgRNAs per gene) and the individual
sub-libraries A and B. We applied a strict Bayes factor
cutoff of BF > 6 [17] to discriminate between essential
and nonessential genes. This analysis revealed highly
overlapping sets of essential genes for each cell popula-
tion. Using the combined library, we found 2096 essen-
tial genes in the Cas9 bulk population, 1938 essential
genes in SCC11, and 1925 essential genes in SCC12. Out
of these, 1755 were shared between the three lines (84%,
91%, and 91% of total essential genes in each cell line).
Only 58 (3% of total) essential genes were private to
SCC11 and 46 (2.5% of total) essential genes were
private to SCC12 (Additional file 12: Fig. S7 A). We
observed similar overlap using only sub-library A or B
(Additional file 12: Fig. S7 C-D). Accordingly, quantita-
tive comparison revealed high Bayes factor correlation
between bulk Cas9 population and single-cell clones
(0.915 for SCC11 and 0.925 for SCC12; Additional file 12:
Fig. S7 B). Overall, we could not observe major differ-
ences in hit calling between selected Cas9 single-cell
clones and a bulk population when addressing general
gene essentiality. Importantly, gene set enrichment ana-
lysis revealed no enrichment for genes involved in DNA

(See figure on previous page.)
Fig. 4 The HD CRISPR library efficiently identifies core, non- and context-dependent essential genes. a Workflow of a pilot screen conducted with
the HD CRISPR library in HAP1 cells. The screen was performed in parallel in the Cas9-expressing bulk population and two highly editing single
cell clones for both libraries independently. Successfully transduced cells were selected with puromycin for 48 h and then split into two
independent replicates. The screen was performed for a duration of 14 days. b Core essential genes were strongly depleted over the course of
screening with either of the two libraries, HD CRISPR libraries A and B, in contrast to nonessential genes. Stronger depletion was observed in the
two single cell clones with high Cas9 editing efficiency. c Empirical cumulative distribution function for viability screens conducted with different
HAP1 Cas9 cell lines and both HD CRISPR sub-libraries. Shown are results for sgRNAs targeting genes from core essential or nonessential gene
sets or representing non-targeting controls. d Area under the curve (AUC) values for individual replicates of the empirical cumulative distribution
functions shown in c. e Comparison of HAP1 essential genes as identified with the HD CRISPR library, a gene trap screen by Blomen et al. [41]
and two CRISPR screens using either the TKOv1 or TKOv3 library by Hart et al. [17]. f Number of essential genes detected with increasing number
of sgRNAs per gene using BAGEL (left; BF > 6) or MAGeCK RRA (right; FDR < 5%). sgRNAs were subsampled from the combined HD CRISPR library
(sub-libraries A and B). Each data point represents the average of 5 samples. Error bars are ±1 s.e.m
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damage repair pathways among SCC11- or SCC12-spe-
cific essential genes [45, 46]. Still, we think that caution is
required when screening in more complex settings as, e.g.,
when addressing drug resistance mechanisms.

CRISPR screens at high sensitivity allow predictions about
sgRNA cutting efficiency
CRISPR-induced DNA double-strand breaks at target
loci are known to induce a DNA damage response,
which significantly affects cell proliferation in compari-
son to negative controls [10]. As a result, non-targeting
sgRNAs are likely to reflect wild-type growth, while
sgRNAs targeting nonessential genes and targeting con-
trols lead to slightly impaired growth [17]. Differences
between targeting and non-targeting controls are usually
subtle. However, small but distinct shifts in the fold
change distributions of non-targeting and targeting con-
trol sgRNAs were visible in all our screens in the HAP1
cell line, further indicating that we were able to select
efficiently cutting sgRNAs also for nonessential genes,
for which empirical design due to the absence of a
strong phenotype is more challenging (Additional file 13:
Fig. S8 A). This shift was especially pronounced in the
screens conducted in the HAP1 Cas9 SCC12 cell line
(Fig. 5a, Additional file 13: Fig. S8 A). We reasoned that
this effect could be explained by the increased sensitivity
that can be achieved by using a single-cell clone selected
for high Cas9 activity. We hypothesized that it might be
possible to exploit this increased resolution to assess the
activity of sgRNAs targeting nonessential genes. Using a
Gaussian mixture model [47], we divided all control

sgRNAs in the SCC12 screen into three groups: (1)
sgRNAs with strong viability phenotypes, (2) sgRNAs
targeting nonessential loci (mild phenotype due to in-
duction of DNA double-strand breaks), and (3) inactive
sgRNAs (Fig. 5a; Additional file 13: Fig. S8 B-C). We
then classified all sgRNAs in the HD CRISPR library into
one of these groups. To avoid bias, we excluded refer-
ence core essential genes [17] from the analysis. sgRNAs
that could not be assigned to any of the groups with a
probability of at least 80% were labeled “undetermined”
(Fig. 5a). As expected, most sgRNAs targeting essential
genes (determined using MAGeCK analysis [42] of the
combined HD CRISPR library) were classified as group 1.
This effect was more pronounced for sgRNAs selected
based on previous phenotypes compared to other sgRNAs
(82% and 60% of sgRNAs targeting essential genes classi-
fied as group 1, respectively; Additional file 13: Fig. S8 D).
In addition, most sgRNAs targeting nonessential genes
were classified as group 2 (likely cutting) whereas only a
small fraction of sgRNAs were classified as group 3 (likely
not cutting). Again, sgRNAs selected based on their phe-
notypes in previous screens appeared favorable compared
to other sgRNAs with a larger fraction classified as likely
cutting (46% compared to 39%) and a smaller fraction
classified as likely not cutting (2% compared to 5%; Fig. 5b;
Additional file 13: Fig. S8 E). These observations suggest
that sgRNA phenotypes in past screens are in fact predict-
ive of whether these sgRNAs will be effective in future
screens and thus motivate empirical design as a viable
strategy for sgRNA selection—not only for core essential
genes but also for context-specific essential genes.

Fig. 5 CRISPR screens conducted at a high dynamic range predict the cutting efficiency of sgRNAs based on mild viability phenotypes. a A
mixture model was used to divide control sgRNAs of the HD CRISPR library A in the single cell clone SCC12 screen into three groups: (1) sgRNAs
with a target-dependent viability phenotype (red), (2) sgRNAs with a small target-independent phenotype likely caused by a double-strand break
(blue), and (3) sgRNAs with no phenotype due to a lack of DNA cutting (yellow). Log2 fold change distributions of targeting and non-targeting
control sgRNAs are indicated as dashed and solid curves, respectively. b Number of sgRNAs targeting nonessential HAP1 genes associated with
each phenotype group. Nonessential genes were determined using MAGeCK which requires no prior knowledge for analysis. sgRNAs are stratified
based on their design: “empirical essential” sgRNAs target context-specific essential genes and were selected for the HD CRISPR library based on
their previous on-target phenotypes. “Empirical nonessential” sgRNAs are part of previously published libraries and target broadly nonessential
genes. They were selected based on their lack of outlier phenotypes. De novo sgRNAs were designed using the software cld [34]
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Identification of HAP1 context-dependent essential genes
Selecting sgRNAs with consistent knockout phenotypes
across several independent screens is most conclusive
for broadly essential genes. Therefore, we examined
whether the HD CRISPR library could also identify
context-dependent essential genes and as such genes
that are specifically essential in HAP1 cells. We com-
pared the list of hits identified in our screens to essential
genes reported in other screens and cell lines in the
GenomeCRISPR database. We identified a set of genes
(including ARGFX, CNIH4, TCEANC, and ZNF676),
which appeared to be essential in more than 75% of pub-
lished screens we used for analysis, but not in our
screens in HAP1 cells using the HD CRISPR library
(Fig. 6a). These might reflect genes essential in most cell
lines, but not HAP1, or might reflect genes that have
been frequently wrongly annotated as essential. When
comparing Bayes factors (BF) as a measurement for gene
essentiality for these genes across different libraries, we
observed that these genes were identified as essential in
screens with the Avana sgRNA library [18], but not with
other published genome-scale libraries (Additional file 14:
Fig. S9). This suggests that the unexpected and broadly
observed essentiality of these genes might reflect artifacts

associated with the respective sgRNAs present in the
Avana library. Such off-targets are likely found in each
CRISPR library and only become apparent when many dif-
ferent cell lines are screened with the same library as is
the case for the Avana library. Importantly, this implies
that our selection strategy, although based on choosing
sgRNAs with strong phenotypes in many screens, does
not enrich for sgRNAs with strong off-target effects.
While the near-haploid karyotype of HAP1 cells ren-

ders them particularly amenable for genetic perturbation
studies [41], relatively little is known about their identity
and cell line-specific dependencies. Thus, we addressed
HAP1 context-dependent essential genes as identified in
our screen in more detail. In general, roughly 2000 genes
are considered to be essential in cultured human cells
[48], which is in accordance with our results (Fig. 4f).
With ~ 700 genes comprising the core essential gene set
[17], ~ 1300 of context-dependent essential genes can be
considered to be identified. HAP1 cells originate from
experiments to induce pluripotency in the leukemia
KBM7 cell line by transduction with KLF4, POU5F1
(Oct4), SOX2, and MYC [39, 49]. Interestingly, our
screening results indicate that this treatment seemed to
have rendered HAP1 cells strongly dependent on

Fig. 6 HAP1 cells are highly dependent on Yamanaka factors and the Fanconi anemia pathway. a HAP1 context-dependent essential genes are
enriched for genes comprising the Fanconi anemia pathway as well as factors known to induce pluripotency. The y-axis provides an estimate of
the percentage of essentiality in other cell lines previously screened. Fanconi anemia pathway genes are highlighted in red, Yamanaka factors are
shown in blue. HAP1-specific nonessential genes are highlighted in green. nt ctrl = non-targeting control. b Crystal violet staining of HAP1 cells
treated with various siRNAs targeting SOX2, POU5F1, and KLF4 and a non-targeting control. Shown is a representative result of three independent
experiments. c Essentiality of known cancer drivers, Fanconi anemia pathway genes, and pluripotency factors across cell lines representing
different cancer cell types in comparison to HAP1 cells and human embryonic stem cells
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POU5F1 and SOX2 and to a lesser extent also on KLF4.
In contrast, KLF4, POU5F1, and SOX2 were only identi-
fied to be essential in less than 5% of other cell lines
screened so far (Fig. 6a). These genes were not identified
as essential in former gene trap screens in HAP1 cells
(Additional file 15: Fig. S10 A), which might be ex-
plained by the fact that HAP1 cells likely carry several
copies of KLF4, POU5F1, and SOX2 due to their initial
transduction. Hence, we further wanted to exclude that
the observed essentiality was due to multiple integra-
tions of the lentiviral expression vector and thus an
increased DNA damage response upon several CRISPR-
induced cuts [10, 29]. Therefore, we validated the de-
pendency of HAP1 cells on KLF4, POU5F1, and SOX2
using siRNAs as an orthologous approach (Fig. 6b,
Additional file 16: Table S4). In addition, we identified
genes comprising the core complex of the Fanconi
anemia pathway to be essential (BF > 6) in HAP1 cells,
while often dispensable in other cell lines (Fig. 6a;
Additional file 15: Fig. S10 A). This dependency was re-
capitulated for individual Fanconi anemia-associated
genes in either the gene trap screens conducted in
HAP1 cells (Blomen et al. [41]) or the CRISPR screens
conducted in HAP1 cells using either the TKOv1 or
TKOv3 sgRNA libraries (Hart et al. [17]) (Additional file 15:
Fig. S10 A). However, while published screens only identi-
fied individual and different Fanconi anemia-associated
genes to be essential in HAP1 cells, we could identify all
members of the core complex and associated genes in-
volved in interstrand crosslink repair to be essential in
HAP1 cells (Additional file 15: Fig. S10 A). This effect was
overall consistent for both HD CRISPR sub-libraries and
in the HAP1 Cas9 bulk cell line as well as both Cas9
single-cell clones, thereby excluding that the stronger
Cas9 editing efficiency and a potentially stronger DNA
damage response in the Cas9 single-cell clones resulted in
this dependency. Nevertheless, we aimed to again validate
the context-specific gene essentiality of HAP1 cells on
genes involved in the Fanconi anemia pathway using an
approach independent of a DNA damage response and
therefore again performed an siRNA knockdown for four
genes of the Fanconi anemia core complex, FANCE,
FANCM, FANCG, and FANCL (Additional file 15: Fig.
S10 B-C, Additional file 16: Table S4). We used four dif-
ferent siRNAs per gene and observed the strongest loss
of cell viability upon knockdown of FANCE and FANC
M, while the reduction in cell viability was milder for
FANCL and FANCG. Again, no difference was ob-
served for the different HAP1 Cas9 cell lines. Since the
generation of HAP1 FANCG and FANCM knockout
cell lines has also been reported recently [50, 51], loss
of expression of Fanconi anemia-associated genes
might rather slow down cellular proliferation than
directly inducing cell death.

The dependency on pluripotency factors prompted us
to compare gene essentiality of HAP1 cells with previ-
ously published CRISPR data for gene essentiality of the
original KBM7 cell line, as well as of human embryonic
stem cells (hESCs) [27, 52]. The comparative analysis re-
vealed that loss of POU5F1 and some of the components
of the Fanconi anemia core complex also resulted in
reduced cell viability in hESCs. In contrast, KBM7 cells
displayed a dependency on several genes associated with
the Fanconi anemia pathway, but not for either of the
Yamanaka factors except for the core essential gene
MYC (Fig. 6c). Interestingly, viability of HAP1 cells did
not seem to be affected by the knockout of known
tumor type-specific oncogenes such as BCR, PIK3CA,
KRAS, CTNNB1, or BRAF (Fig. 6c). Especially the lack of
BCR dependency is surprising, since both HAP1 cells
and their parental cell line KBM7 harbor a BCR-ABL fu-
sion gene, which, however, is only required for prolifera-
tion in KBM7 cells. Based on their shared dependencies
with hESCs while missing an addiction to known tumor
type-specific oncogenes, we suggest that the initial trans-
duction with pluripotency factors has rendered HAP1
cells to adopt stem cell-like characteristics.

Discussion
Over the last few years, pooled genome-scale CRISPR-
Cas9 screens have quickly become an established and in-
dispensable tool to functionally interrogate the human
genome. Still, much remains to be learnt about optimal
experimental conditions and sgRNA design to optimize
especially the dynamic range and phenotype detection in
CRISPR screens, while minimizing expenses and workload.
To date, large-scale CRISPR-Cas9 screens have been

conducted in hundreds of human cell lines [8, 10, 12, 13,
27, 28]. These data now enable us to draw conclusions
about the efficacy of hundreds of thousands of sgRNAs
in diverse experimental contexts. Here, we introduced a
strategy to leverage data from published CRISPR screens
for sgRNA design. Our goal was to prioritize sgRNAs
with consistently high on-target activity, while simultan-
eously avoiding sgRNAs with off-target effects. Here, our
fundamental assumption is that sgRNA design algo-
rithms do not naturally enrich for guides with strong
off-target effects and that sgRNAs targeting the same
gene but featuring different sgRNA sequences are un-
likely to share the same toxic off-target. We were able to
select high-quality sgRNAs and to assemble them into
the Heidelberg (HD) CRISPR library. In total, 30–42% of
sgRNAs for both sub-libraries were selected based on
empirical essentiality phenotypic evidence, meaning that
the selected sgRNA displayed a viability phenotype in at
least 5% of the screens analyzed. This number is limited
primarily by the fact that currently available CRISPR
screening data are mostly derived from viability screens
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for gene essentiality. Therefore, we expect this number
to grow quickly once screens for additional phenotypes
become available. Furthermore, we could select non-
toxic guides for the remaining 50 to 60% of protein-
coding genes, generating libraries with overall 96% of
empirically designed guides. We could show that guides
in this library were enriched for high sequence scores
according to different design rules, although these were
not initially taken into account for library design. To
evaluate the performance of this library, we conducted a
genome-scale screen for gene essentiality in HAP1 cells
and confirmed that our library was able to distinguish
between core and nonessential reference genes with high
precision and accuracy. Since it is desirable to minimize
library size for CRISPR screens in order to reduce
expenses and experimental efforts, we assessed how the
number of sgRNAs per gene would affect the detection
of essential genes. Therefore, we compared screens with
the combined HD CRISPR library (8 sgRNAs per gene)
and screens in individual sub-libraries A and B (4
sgRNAs per gene). Screening with only one of the two
sub-libraries reduces experimental efforts by ~ 3.5 × 107

cells per replicate and split when screening with a 500-
fold coverage.
To further analyze how these results would be affected

by editing efficiency and clonality effects, we performed
screens in a HAP1 Cas9 bulk population as well as two
Cas9 single-cell clones. Overall, essential genes were
highly consistent between the bulk population and the
single-cell clones, while phenotypes were persistently
stronger in the single-cell clones. This could not be ex-
plained by differences in ploidy of Cas9 single-cell clones
and the bulk population, since enriched diploid popula-
tions of the two HAP1 Cas9 single-cell clones still
showed similar editing efficiency to enriched haploid
populations and remained superior in comparison to
Cas9 bulk populations. This indicates that interpopula-
tion heterogeneity is a stronger determinant of editing
efficiency than ploidy. Our results suggest that single-
cell clones with high Cas9 activity are attractive models
to screen for gene essentiality at small library sizes, espe-
cially since the signal-to-noise ratio has recently been
shown to correlate to the frequency of core essential
gene dropout [37]. In-depth characterization of one
Cas9 single-cell clone for general properties of the par-
ental cell line is, however, advisable and especially worth
the effort when several CRISPR screens with different
experimental setups are planned to be done in the same
cell line. Enhanced CRISPR editing efficiency in this case
is likely to facilitate hit detection, while follow-up studies
could be considered to be done including the parental
cell line to exclude clonality effects. While we did not
observe strong clonality effects between single-cell
clones for detecting essential genes, it is likely that other

phenotypes might be affected more severely by clonal
differences. Therefore, caution is especially required
when using single-cell clones in screens for phenotypes
such as pathway activity or cell morphology. A middle-
way could be to pool several independent single-cell
clones with similar proliferation rates into a pseudo bulk
population that can be used for screens. By this means,
clonality effects may be minimized while still maintain-
ing high editing efficiency.
Haploid cell lines such as HAP1 cells are an attractive

model for genetic perturbation studies since the pres-
ence of a single allele implies enhanced knockout effi-
ciency [41] compared to polyploid cancer cell lines
where a full knockout requires out-of-frame editing of
all alleles of a gene [53]. HAP1 cells with specific gene
knockouts have therefore been applied in many studies
addressing various research questions [54–59]. The exact
cellular context of this cell line is, however, not fully
understood, especially since HAP1 cells do not share
major characteristics with their parental chronic myeloid
leukemia (CML) cell line KBM7. In contrast to KBM7
cells, HAP1 cells grow adherent and are not dependent
on BCR (Fig. 5c), while Bcr-Abl inhibitors represent the
first-line therapy in CML [60]. When specifically assessing
HAP1 context-dependent gene essentiality, we identified
known and so far unreported HAP1 context-specific
essential genes. In particular, we describe a strong HAP1-
specific dependency on the Yamanaka factors POU5F1,
SOX2, and to a lesser extent also KLF4 [49]. These genes
have been transduced into KBM7 cells during the gener-
ation of the HAP1 cell line [41]. Further, HAP1-specific
essential genes were enriched for components of various
complexes of the Fanconi anemia pathway. The Fanconi
anemia pathway is mainly known to be responsible for the
repair of stalled replication forks that occur as a conse-
quence of interstrand crosslinks [61]. Recently, it has been
reported that FANCD2 localizes to sites of Cas9-induced
DNA double-strand breaks where it supports CRISPR-me-
diated homology directed repair and in particular single-
stranded template repair [62]. Interestingly a dependency
on certain Fanconi anemia regulators can also be observed
in two other haploid cell lines. These include the near-
haploid HAP1 parental cell line KBM7 [27] and a haploid
human embryonic stem cell line [52]. Since regulators of
the Fanconi anemia pathway are rarely essential in other
cell lines, we speculate that the occurrence of interstrand
crosslinks might be more detrimental in cells featuring
only one copy of any given gene.
In conclusion, we show that the available data on

sgRNA phenotypes in large-scale CRISPR essentiality
screens can be used to inform the empirical design of
sgRNA libraries. We provide the HD CRISPR library, a
new library for genome-wide CRISPR-Cas9 screens with
high on-target and low off-target activity. We further
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show evidence that single-cell clones are powerful
models to conduct gene essentiality screens at a low li-
brary coverage of sgRNAs per gene and can improve
screening quality over screening in Cas9 bulk popula-
tions. These findings might guide experiment design for
the next generation of CRISPR-Cas9 screens in mamma-
lian cell culture.

Conclusions
We conclude that conducting CRISPR/Cas9 viability
screens using next-generation empirically designed sgRNA
libraries and strongly editing Cas9 single-cell clones im-
proves the resolution of CRISPR screens and to differenti-
ate also subtle viability phenotypes, which in turn allows hit
detection with a smaller number of sgRNAs per gene. We
show that empirical design of sgRNA libraries based on
phenotypic evidence from previous screens is a suitable
predictor for sgRNA cutting efficiency and allows selection
of highly active guides, which we assembled in a genome-
scale CRISPR library termed “HD CRISPR library”.

Methods
Heidelberg CRISPR library design
Raw sgRNA count data were downloaded from the
GenomeCRISPR database (November 5, 2017 [25]. Only
negative selection screens performed using humanized
Streptococcus pyogenes Cas9 were retained for downstream
analysis. At the time of sgRNA design, no published screens
were available with the TKOv3 [17] and Brunello [19] li-
braries. Therefore, these sgRNA sequences were added to
the GenomeCRISPR-derived sgRNA pool. Next, all targeted
transcripts and protein-coding exons were annotated for
each sgRNA. For this purpose, genomic information was
derived from the ENSEMBL database (GRCh38 [31] using
biomaRt [63]. In order to determine putative off-target ef-
fects for each sgRNA, sgRNA sequences were mapped to
the genome using bowtie2 [64]. Specifically, local alignment
was performed using bowtie2’s “very-sensitive-local” setting
allowing for up to 3 mismatches. This strategy for compu-
tational off-target prediction was motivated by previous
studies [34, 65].
To additionally avoid sgRNAs with off-target effects,

sgRNAs were grouped by their target genes and their Gen-
omeCRISPR effect scores [25] were z-normalized. This was
done to identify sgRNAs whose phenotypes strongly deviate
from the phenotypes of other sgRNAs targeting the same
gene. Increasing depletion of sgRNAs targeting nonessential
genes and lack of depletion of sgRNAs targeting core essen-
tial genes was detected at effect scores smaller than − 1.25
and larger than 1.25, respectively (Additional file 1: Fig. S1
C). Therefore, sgRNAs with an absolute effect score of
greater than 1.25 were flagged.
Next, sgRNA sequences containing consecutive stretches

of the same nucleotide (4 or more A’s/T’s, 5 or more G’s/

C’s) were flagged since these sequences have been shown to
create problems during polymerase transcription and PCR
amplification. In addition, sequences containing BbsI re-
striction sites (GAAGAC and reverse complement) and
sequences with a strong GC bias (GC greater than 75% or
less than 20%) were excluded. To determine sgRNA per-
formance, all negative selection (for viability) screens in
GenomeCRISPR (in total 488) were analyzed using BAGEL
v0.91 [32] with the CEGv2 and NEGv1 core and nonessen-
tial reference gene sets [17, 33]. To evaluate the quality of
each screen, precision-recall curves (PR curves) were gener-
ated for each experiment using the ROCR R package [66].
These PR curves evaluate how well reference core and non-
essential genes could be separated based on the sgRNA de-
pletion phenotypes in the screen. Screens for which the
area under the PR curve was less than 0.9 were excluded
from further analysis. For all other screens, genes were cate-
gorized as essential and nonessential at 5% false discovery
rate (FDR). An sgRNA was then determined as active in a
screen if (a) it was determined to target an essential gene
(in the screened cell line) and (b) its depletion phenotype
(quantified as sgRNA count fold change compared to a T0/
plasmid sample) was among the 20% strongest sgRNA phe-
notypes in the screen. In a genome-wide CRISPR screen for
cell proliferation, approximately 12% of all protein-coding
genes are expected to be essential [12, 67] and therefore
12% of all sgRNAs are expected to have an on-target
phenotype. However, in order to not miss sgRNAs with po-
tential subtle phenotypes, we selected a lenient threshold of
20% to determine active sgRNAs. sgRNAs for the HD CRIS
PR library were finally selected from the remaining pool of
sequences. sgRNAs that were determined as active in a
large number of screens were prioritized. However, to avoid
selecting sgRNAs based on spurious effects, sgRNA activity
was only considered as selection criteria if the sgRNA was
determined as active in at least 5% of the screens in which
they were used. Otherwise, sgRNAs targeting exons present
in many transcript isoforms, sgRNAs targeting exons close
to the transcription start site, and sgRNAs with a low num-
ber of predicted off-target effects were prioritized. In total,
a genome-wide library consisting of two mutually exclusive
sub-libraries A and B was assembled. Each sub-library
contains 4 sgRNAs per gene targeting 18,913 and 18,
334 protein-coding genes, respectively. In cases where
less than 4 sgRNAs were available for a gene based on
the filtered pool of sequences described above, missing
sgRNAs were designed with the CRISPR library de-
signer [34]. Further 300 non-targeting controls derived
from published libraries [6, 8, 27] and 135 targeting
controls targeting intronic regions or the AAVS1 safe
harbor locus [65] were added to each sub-library.
Control sgRNAs are identical between the sub-libraries.
In total, this resulted in sub-libraries of sizes 74,987
(library A) and 71,048 (library B) that can be combined
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into a library of size of 146,035 sgRNAs for increased
detection power.

Cloning of the HD CRISPR sgRNA vector
For generation of the HDCRISPRv1 vector, an insert
encoding the human U6 promoter, an eGFP stuffer, part
of the improved sgRNA scaffold [38], the cPPT/CTS, the
human PGK promoter, a puromycin N-acetyltransferase,
and the WPRE next to stuffer sequences was ordered as
a GeneArt Synthetic Gene (Life Technologies) and PCR-
amplified. The bacterial backbone of the pLCKO vector
(kind gift from the Moffat lab, Addgene #73311) was
linearized from the 3′LTR to the RRE by PCR, and both
PCR products were fused using In-Fusion Cloning
(Takara Bio) and transformed into One Shot Stbl3
Chemically Competent E. coli (Life Technologies). A
correct cloning product was identified by control restriction
enzyme digestion using AarI (Thermo Fisher Scientific)
and subsequent Sanger sequencing. The initial plasmid only
contained half of the improved sgRNA scaffold due to dif-
ferent possible sgRNA cloning strategies. To clone the
complete improved sgRNA scaffold inside, the plasmid was
digested using AarI (Thermo Fisher Scientific) according to
the manufacturer’s recommendations. The larger fragment
was gel purified and used for In-Fusion cloning with a
gBlock (Integrated DNA Technologies) encoding overlap-
ping overhangs of the human U6 promoter and the sgRNA
scaffold, the eGFP stuffer, and the missing part of the im-
proved sgRNA scaffold. The In-Fusion cloning product was
again transformed into One Shot Stbl3 Chemically Compe-
tent E. coli (Life Technologies) and the correct plasmid
verified by Sanger sequencing.

Cell lines and cell culture
Wild-type HAP1 C631 cells were ordered from Horizon
Discovery and maintained at 37 °C, 5% CO2 in IMDM (Life
Technologies) supplemented with 10% FCS. For stable Cas9
expression, the parental cell line was transduced at an MOI
of ~ 0.5 with lentivirus generated using the Lenti Cas9-2A-
Blast plasmid (kind gift of the Moffat lab, Addgene #73310)
and selected with 20 μg/ml blasticidin (InvivoGen) for at
least 1 week. Out of this bulk population, single cells with a
small cell size (indicative for a haploid genotype) were sorted
in 96-well plates, expanded, and again selected with 20 μg/
ml blasticidin. Blasticidin-resistant clones were further char-
acterized for Cas9 editing efficiency. Mycoplasma contamin-
ation was periodically assessed for all cell lines. The HAP1
cell line was authenticated using Multiplex Cell Authentica-
tion by Multiplexion (Heidelberg, Germany) as described re-
cently [68]. The SNP profile was unique.

Sorting of haploid and diploid HAP1 populations
Enrichment of haploid and diploid HAP1 Cas9 SCC11 and
SCC12 populations was achieved using flow cytometry as

described previously [40]. In brief, respective HAP1 cells
were trypsinized and a sub-sample (~ 8 × 105 cells) was
stained using 10 μg/ml Hoechst 33342 for 30min at 37 °C.
Stained cells were analyzed by flow cytometry and DNA
Hoechst intensity peaks allowed for back gating of the hap-
loid and diploid populations of interest in the FSC and
SSC, as haploid cells are smaller in size. Respective gates in
the FSC/SCC were used for sorting haploid and diploid
HAP1 cells from unstained samples.

Lentivirus production and MOI determination
Low-passage (< 15) HEK293T cells were seeded to reach
70–80% confluency on the day of transfection. The lenti-
viral packaging vector psPAX2 (kind gift from the Didier
Trono lab, Addgene #12260) and the lentiviral envelope
vector pMD2.G (kind gift from the Didier Trono lab,
Addgene #12259) were co-transfected with the respect-
ive lentiviral expression vector (~ 1:1:3M ratio) using
Trans-IT (VWR) and OptiMEM (Gibco). Roughly 16 h
post transfection, the medium was replaced by fresh cul-
ture medium and lentiviral supernatant was harvested
48 h post transfection by filtration through a 0.45μm
PES membrane, aliquoted, and stored at − 80 °C until
transduction. For multiplicity of infection (MOI) deter-
mination, target cells were transduced with different
amounts of lentiviral supernatant in the presence of
8 μg/ml polybrene. Transduced cells were selected for
48 h with 2 μg/ml puromycin (Biomol) starting 24 h post
transduction, and the number of surviving cells was
compared to a non-transduced control sample.

Single sgRNA cloning
Single sgRNA sequences were cloned into the HDCRIS
PRv1 vector as described previously [35]. In brief, the
HDCRISPRv1 vector was sequentially digested with
BfuAI (NEB) and BsrGI-HF (NEB), followed by dephos-
phorylation using CIP (NEB). The digested backbone
was gel purified using the Macherey&Nagel NucleoSpin
Gel and PCR Clean-up kit. sgRNA inserts were designed
as two complementary oligos encoding the sgRNA target
region as well as the cloning specific overhangs and were
ordered as standard desalted oligos from Eurofins Gen-
omics. Oligos were phosphorylated and annealed using
T4 PNK (NEB) in 10X T4 Ligation Buffer (NEB). Diluted
oligo duplexes were ligated into the digested vector
using Quick Ligase (NEB) and transformed into Stbl3
recombination-deficient bacteria. A Midi- or Maxiprep
(QIAfilter plasmid kit) was performed for lentivirus pro-
duction or cell transfection.

Plasmid transfection
To address functional sgRNA expression from the HDCR
ISPRv1 vector, sgRNAs targeting the essential gene RNA
Polymerase II Subunit E (POLR2E) and control sgRNAs
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designed to target the safe harbor locus AAVS1 were
cloned into the HDCRISPRv1 vector as described above
and transfected into HAP1 Cas9 bulk, HAP1 Cas9 SCC11,
and HAP1 Cas9 SCC12 cells using Fugene transfection re-
agent (Promega). Then, 24 h post transfection, successfully
transfected cells were selected using 2 μg/ml puromycin
(Biomol) for 48 h. Dead cells were removed by washing
with PBS and viable and still attached cells were stained
using 0.5% Crystal violet (Sigma) staining solution supple-
mented with 20% methanol.

siRNA transfection
Cells were reverse transfected with 20 nM of the indi-
cated siRNAs using Lipofectamine RNAiMAX Transfec-
tion Reagent (Thermo Fisher Scientific) and OptiMEM
Reduced Serum Media (Thermo Fisher Scientific). Cell
viability was analyzed 48 h post transfection.

Flow cytometry analysis
SgRNA sequences targeting surface markers were cloned
into the HDCRISPRv1 vector as described above. Lenti-
virus was generated from all expression vectors. 1 × 105

HAP1 Cas9 bulk, HAP1 Cas 9 SCC11, and HAP1 Cas9
SCC12 cells supplemented with 8 μg/ml polybrene were
reversely transduced using 5 μl viral supernatant, and
successfully transduced cells were selected with 2 μg/ml
puromycin (Biomol) 24 h post transduction. Five days
after transduction, cells were harvested and the respect-
ive surface markers stained with an APC anti-human
CD46 antibody (Biozol Diagnostica, Cat. No. 352405,
RRID AB_2564356) or an APC anti-human CD81 anti-
body (Biozol Diagnostica, Cat. No BLD-349510, RRID
AB_2564021). The percentage of CD46 and CD81
knockout was determined as the percentage of APC-
negative single cells in three independent replicates.

Library cloning
Oligos encoding the HD CRISPR library A and B sgRNA
sequences and flanking regions were ordered as an oligo
pool from Twist Biosciences. Oligos were amplified
using the KAPA HiFi HotStart ReadyMix (Roche) using
flanking primers in 12 PCR cycles. The resulting PCR
product was purified using the NucleoSpin Gel and PCR
Clean-up kit (Macherey&Nagel), and the correct frag-
ment size was confirmed using a High Sensitivity Bioa-
nalyzer DNA Kit (Agilent). For cloning, the HDCRISPR
v1 vector was digested with BfuAI (NEB) and BsrGI-HF
(NEB) overnight and dephosphorylated using CIP (NEB).
The resulting linearized ~ 7000 bp vector missing the
eGFP stuffer was gel purified again using the NucleoSpin
Gel and PCR Clean-up kit (Macherey&Nagel) and used
for library cloning in a one-step digestion-ligation-reaction
[69]. The cloning product was purified by isopropanol pre-
cipitation and transformed into Endura ElectroCompetent

Cells (Biocat), and individual transformation reactions were
pooled and plated on freshly prepared LB-carbencillin
plates. A 1:10,000- and 1:100,000-fold dilution was used to
estimate the total number of colonies and thus the library
coverage during transformation, which was aimed for to be
at least 250-fold. Bacteria were incubated at 30 °C for max-
imal 16 h and harvested by scraping. The resulting plasmid
pool was purified with the QIAfilter Plasmid Mega Kit
(Qiagen). Representation and distribution of sgRNAs was
analyzed by next-generation sequencing.

Analysis of non-digested backbone contaminations in
plasmid preparations
To address cloning efficiency and background of
remaining non-digested vector in HD CRISPR library
preparations, plasmid purifications were transfected into
adherent HAP1 C631 cells using Fugene (Promega).
Remaining eGFP stuffer in the non-digested vector will
lead to GFP expression upon transfection and thus
serves as an indicator for pooled cloning efficiency. To
assess the resulting fraction of GFP-positive cells upon
transfection of a known proportion of undigested vector
backbone, equally concentrated plasmid purifications of
the non-digested HDCRISPRv1 vector and a plasmid
purification of the HDCRISPRv1 vector expressing an
AAVS1-targeting sgRNA were mixed at the indicated
ratios. Successfully transfected cells were selected 24 h
post transfection using 2 μg/ml puromycin (Biomol) for
48 h. Subsequently, cells were either imaged on an IN
Cell Analyzer 6000 to address GFP expression or har-
vested and washed with PBS, and GFP expression was
analyzed by flow cytometry.

Nicoletti ploidy stain
For DNA content analysis, HAP1 cells were harvested
by trypsination and 5 × 105 cells were washed with cold
PBS by centrifugation. Cells were subsequently resus-
pended in 400 μl Nicoletti buffer (0.1% sodium citrate, 0,
1% Triton X-100, 0.5 units/ml RNase A, 50 μg/ml propi-
dium iodide (PI)) and incubated for 2 h at 4 °C under ro-
tation. Haploid, diploid, and a 1:1 mixture of haploid
and diploid HAP1 cells were prepared as controls. DNA
content analysis was performed by measuring PI inten-
sity using flow cytometry. Controls were used to set PI
intensity peaks at 50 K for G1-phase haploid cells and
100 K for G1-phase diploid cells.

Pooled CRISPR depletion screen
Prior to screening, each cell line was re-selected with
20 μg/ml blasticidin (InvivoGen) for at least 1 week. A
total of 225 × 106 HAP1 Cas9 bulk, HAP1 Cas9 SCC11,
and HAP1 Cas9 SCC12 cells were transduced with the
lentiviral HD CRISPR library A or B to achieve an initial
library coverage of at least 300–500-fold upon infection
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at an MOI of ~ 0.1–0.3, including non-transduced con-
trol flasks and accounting for variation in transduction
efficiency on a large scale. Then, 24 h post transduction,
successfully transduced cells were selected with 2 μg/ml
puromycin (Biomol). One plate was cultured in the
absence of puromycin for MOI determination. Then, 48
h post selection, cells were harvested and the MOI was
determined by calculating the ratio of living cells in the
presence and absence of puromycin selection. Cells were
re-seeded at a 500-fold library coverage in two inde-
pendent replicates for each cell line and cultured for 14
days with regular cell splitting every 2 to 3 days. A 500-
fold library coverage was maintained throughout the
screen for each replicate, and 45 × 106 cells representing
a ~ 500-fold library coverage were collected at every pas-
sage. Genomic DNA was isolated from the final passage
for genomic DNA extraction and sequencing.

Genomic DNA extraction, library preparation, and sequencing
Genomic DNA was isolated from frozen cell pellets
using the QIAAmp DNA Blood and Tissue Maxi Kit
(Qiagen) and purified by ethanol precipitation. The
sgRNA spanning region was amplified from purified gen-
omic DNA at a 100-fold library representation. Illumina
adapters and indices were added in the same one-step
PCR reaction using the KAPA HiFi HotStart ReadyMix
(Roche). The PCR product was purified using the QIA-
Quick PCR Purification Kit (Qiagen) and eluted on MiniE-
lute columns (Qiagen) upon library preparation from a
plasmid pool or further gel purified to remove genomic
DNA contamination using the NucleoSpin Gel and PCR
Clean-up kit (Macherey&Nagel) in case of library prepar-
ation for screening samples. The correct fragment size
was confirmed with a High Sensitivity Bioanalyzer DNA
Kit (Agilent). Sequencing was performed on an Illumina
NextSeq 550 system with a High-Output Kit (75 cycles)
(Illumina). Low heterogeneity was either addressed by
using a custom sequencing primer binding immediately
upstream of the sgRNA targeting sequence or by using
the standard Illumina sequencing primer and adding 20%
PhiX.

Calculation of sgRNA sequence scores
For the calculation of Ruleset 2 scores [19], flanking
regions for each sgRNA were retrieved using the Biocon-
ductor BSgenome package (human genome version
hg38) [70]. Ruleset 2 scores were then calculated using
the previously published software [19]. Similarly, DeepHF
scores were computed using published software [20] ac-
cording to the instructions on the corresponding GitHub
page (https://github.com/izhangcd/DeepHF). Finally, opti-
mized sgRNA scores according to Hart et al. were calcu-
lated based on the position weight matrix published with
the corresponding manuscript [17].

Initial data processing and analysis
The MAGeCK software version 0.5.7 [42] was used to
quantify sgRNA abundance from sequencing data. A
pseudo count was added for each sgRNA in each sample.
To adjust for differences in sequencing depth, samples
were then normalized by dividing sgRNA counts to the
median count of the targeting controls. sgRNA depletion
phenotypes were quantified as log2 fold changes were
calculated for each sgRNA as fcsgRNA ¼ log2ð rcsample

rcplasmid
Þ

where rcsample are normalized read counts of samples
after 14 days of selection and rcplasmid are normalized
counts of the plasmid library. Reproducibility between
replicates was assessed using Pearson and Spearman correl-
ation coefficients. To combine the screens in sub-libraries
A and B into a combined library dataset, raw counts for
each sample were first normalized to the same library depth
through division by the median count in each sample and
multiplication by the median count across all samples. Nor-
malized counts for screens in sub-libraries A and B were
then combined into a combined library count file. Normal-
ized counts were further rounded to the closest count. To
determine knockout phenotypes of house-keeping (core es-
sential) genes compared to nonessential genes, previously
reported gold standard lists of core (CEGv2) and nonessen-
tial (NEGv1) genes were used [17, 33].

Classification of essential genes
To evaluate screen performance, BAGEL v0.91 [32] was
used to classify genes as essential and nonessential [71].
Specifically, a gene was classified as essential if the Bayes
factor (BF) determined by BAGEL was greater than 6
(similar cutoffs were chosen as in [17]). Precision-recall
curves and statistics to quantify how well core and non-
essential reference genes could be separated based on
each screen’s depletion phenotypes were determined
using the ROCR R package [66]. To compare essential
gene detection power of individual sub-libraries com-
pared to the combined library, the MAGeCK RRA [42]
and gscreend [43] algorithms were used in addition to
BAGEL to determine essential genes at 5% FDR. MAGeCK
RRA was used with default parameters. For gscreend ana-
lysis, the number of permutations used to calculate the ⍴0

parameter for gene ranking was set to 10,000.

Analysis of cutting and non-cutting sgRNAs
A Gaussian mixture model with 4 components was fit to
the fold change distributions of all targeting (n = 270)
and non-targeting control (n = 600) for each screen
separately using an expectation maximization algorithm
implemented in the R package “mixtools” [47]. Here,
two components were used to capture the fold change
distributions of targeting and non-targeting controls
(henceforth referred to as components 1 and 2, respectively)
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and two additional mixture components were used to
capture moderate and several viability phenotypes of toxic
controls (components 3 and 4; Additional file 13: Fig. S8 B).
The resulting models were used to classify each additional
sgRNA in the library as follows: each sgRNA was mapped to
the control with the most similar phenotype. If that control
was assigned to components 3 or 4 with a probability
of at least 80%, the sgRNA was assumed to have a
target-dependent viability phenotype. If the associated
control was assigned to component 1 or 2 with a prob-
ability of at least 80%, an sgRNA was considered “likely
cutting” or “likley not cutting”, respectively. If a control
could not confidently be assigned to any of the mixture
components (probability for all components < 80%),
then all sgRNAs with similar phenotypes were labeled
“undetermined”.

Influence of library coverage on essential gene detection
To investigate how library coverage affects the number
of essential genes that can be detected, 2 to 8 sgRNAs
per gene were sampled from the combined HD CRISPR
library. Five independent samplings were performed for
each library coverage. BAGEL v0.91 [32] and MAGeCK
RRA v0.5.7 [42] were then used to classify essential genes
at BF > 6 (for BAGEL) and FDR < 5% (for MAGeCK) in
both the bulk population and the single-cell clones. CEGv2
and NEG1 core and nonessential reference gene sets were
used for essential gene detection with BAGEL.
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Additional file 1: Figure S1. HD CRISPR library composition. (A)
Precision recall curves for differentiating reference core and nonessential
genes based on BAGEL Bayes Factors determined for published fitness
screens in GenomeCRISPR. Blue curves indicate screens with an area
under the curve (AUC) greater than 0.9. Red screens with an AUC of less
than 0.9 were excluded for HD CRISPR sgRNA design. (B) Log2 fold
change distributions of core essential (red) and nonessential (blue)
reference genes for a high quality (left) and a low quality (right) example
screen. (C) Library composition of the HD CRISPR sub-libraries A and B.
Horizontal bars on the left indicate the number of designs used from dif-
ferent previously published libraries. The panel on the bottom right
shows combinations of libraries, that include designs selected for the HD
CRISPR library. The bars above this panel quantify the number of selected
sgRNAs for each of these combinations. (D) Distribution of exon ranks tar-
geted by the sgRNAs in the HD CRISPR library. (E) Distribution of the pre-
dicted off-target counts (see Materials & Methods) for sgRNAs in the HD
CRISPR library. (F) Number of sgRNAs, which remained per gene after
pre-filtering and were considered for library design. (G) Phenotypic devi-
ation of published sgRNA phenotypes targeting the same gene. For each
gene the difference between the GenomeCRISPR effect scores of the
sgRNAs with the smallest and the largest effect scores was calculated.
This process was repeated for each library using only those sgRNAs in-
cluded in that library. Guides selected for the HD CRISPR libraries A and B
show a narrow phenotypic deviation in published screens from which
they were selected.

Additional file 2: Table S1. Annotated sgRNA sequences of the HD
CRISPR Library.

Additional file 3: File S1. sgRNA sequences of the HD CRISPR Library A.

Additional file 4: File S2. sgRNA sequences of the HD CRISPR Library B

Additional file 5: Figure S2. Features and performance of the HDCRIS
PRv1 vector. (A) Composition of the lentiviral HD CRISPR sgRNA
expression vector. (B) sgRNA cloning efficiency can be addressed upon
transfection of the HDCRISPRv1 vector, since residual GFP stuffer in non-
digested vector backbone leads to GFP expression (B.l) (n = 2). Complete
removal as achieved when cloning single sgRNAs abolishes GFP expres-
sion (B.ll) (n = 2), while remaining stuffer in 10% of the plasmid pool still
leads to a substantial amount of GFP positive cells (B.lll) (n = 2). Transduc-
tion of the non-digested vector still containing the GFP-stuffer does not
result in GFP-expressing cells (B.IV) (n = 1). Scale bar = 100 μM (C) FACS
analysis of GFP expression upon transfection of the non-digested HDCRIS
PRv1 vector (l) (n = 2) or the HDCRISPRv1 vector expressing an sgRNA (ll)
(n = 3). A mixture of GFP positive and negative cells can be observed
upon transfection of a mixture of stuffer and sgRNA-containing vector (lll
and IV) (n = 3 for III and n = 2 for IV). (D) Editing efficiency was further-
more assessed upon transduction of HAP1 Cas9 cells with the HDCRISPR
v1 vector expressing sgRNAs targeting the surface proteins CD81,
followed by FACS staining of residual CD81 protein to address knockout
efficiency. Antibody staining of the non-edited cell line was used as a
control. Lines represent the mean of three independent experiments for
each condition.

Additional file 6: Table S2. sgRNA sequences used in this study.

Additional file 7: Figure S3. DNA content analysis to determine ploidy
of various HAP1 Cas9 populations. (A) HAP1 Cas9 bulk and HAP1 Cas9
SCC11 and SCC12 cells were stained for DNA content using Nicoletti
buffer and FACS analysis. The percentage of G1 haploid cells and G2
diploid cells are indicated for each cell population (n = 2 for each
condition). (B-C) Enriched haploid and diploid populations of the HAP1
Cas9 SCC11 (B) and Cas9 SCC12 (C) cell lines were obtained by FACS
sorting. Subsequently, haploid and diploid populations were
independently transduced with the HDCRISPRv1 vector expressing
sgRNAs targeting the surface marker CD46 and editing efficiency was
directly compared in the haploid and diploid population of the same cell
line. Non-edited samples of the respective cell lines served as a control.
Lines represent the mean of three independent experiments for each
condition.

Additional file 8: Figure S4. Cloning quality control of the HD CRISPR
library. (A) Distribution of sgRNA read counts for the HD CRISPR plasmid
library preparations. Skew ratios were determined as the quotient of the
top 10 quantile divided by the bottom 10 quantile. (B) FACS analysis of
GFP expression upon transfection of the HD CRISPR Library A and B
plasmid pools to address the presence of remaining GFP stuffer (n = 3 for
each condition).

Additional file 9: Figure S5. Reproducibility of negative selection
screens with the HD CRISPR library. (A) Scatter plots showing the
reproducibility of sgRNA phenotypes across biological replicates in
screens with the HD CRISPR library. Each column includes screens
performed in a bulk cell population (left) or in selected single cell clones
with high Cas9 activity (middle and right). The top and bottom rows
include screens with the HD CRISPR sub-libraries A and B, respectively. (B)
Boxplot representing the distribution of the differences of the maximal
and the minimal log2 fold change of guides targeting the same gene in
individual screens. For each gene the difference between the maximal
and the minimal sgRNA log2 fold change was calculated. This process
was repeated for both HD CRISPR sublibraries using the phenotypes de-
rived from screens in bulk population and single cell clones. Guides tar-
geting the same gene result in similar log2 fold changes with a median
difference of the maximal and the minimal log2 fold change smaller 1 for
all screens. (C) Precision-recall-curve analysis for reference core essential
and nonessential gene sets (Hart et al., 2015, Hart et al., 2017) of screens
conducted in the HAP1 Cas9 bulk population using either the HD CRISPR
Library A or B and two published CRISPR screens conducted in HAP1 cells
using either the TKOv1 or TKOv3 library (Hart et al., 2017) as a reference.
(D) Hit calling of the HD CRISPR Libraries A and B in comparison with a
CRISPR screen conducted in HAP1 cells by Hart et al. (2017) using the
TKOv1 library. (E) Hit calling of the HD CRISPR Libraries A and B in
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comparison with a CRISPR screen conducted in HAP1 cells by Hart et al.
(2017) using the TKOv3 library. PCC = Pearson Correlation Coefficient,
SCC = Spearman Correlation Coefficient.

Additional file 10: Table S3. BAGEL scores for individual genes in
individual screens.

Additional file 11: Figure S6. Hit detection in screens with the HD
CRISPR library. (A) Number of hits determined using BAGEL [32] at a strict
Bayes factor cutoff (BF > 6) in different screens conducted with the HD
CRISPR library. (B) Number of essential genes determined using MAGeCK
RRA [42] at 5% FDR in different screens conducted with the HD CRISPR
library. (C) Number of essential genes determined using gscreend [43] at
5% FDR in different screens conducted with the HD CRISPR library. (D)
Venn diagrams showing the overlap between essential genes
determined using either BAGEL or MAGeCK RRA for each screen.

Additional file 12: Figure S7. Essential genes are highly consistent
between HAP1 Cas9 bulk population and single cell clones. A) Venn
diagram showing essential gene overlap between a HAP1 bulk Cas9
population and two single cell clones that were selected for high Cas9
activity. Gene essentiality was determined using BAGEL with a Bayes
Factor cutoff of 6 (see [17]). The combined HD CRISPR library with 8
sgRNAs per gene was used for essential gene inference. (B) Quantitative
comparison of BAGEL Bayes Factors for each gene between the HAP1
bulk Cas9 population and selected single cell clones SCC11 and SCC12.
Each dot represents a gene in the HD CRISPR library. Red dots indicate
essential genes that are private to a single cell clone. The dashed
diagonal is the identity line. (C) Venn diagram (left) and scatter plots
(middle and right) showing essential gene overlap between a HAP1 bulk
Cas9 population and two single cell clones in screens using the HD CRIS
PR sub-library A. (D) Venn diagram (left) and scatter plots (middle and
right) showing essential gene overlap between a HAP1 bulk Cas9 popula-
tion and two single cell clones in screens using the HD CRISPR sub-
library A.

Additional file 13: Figure S8. Prediction of sgRNA DNA cutting activity
based on control phenotypes. (A) Log2 fold change phenotype
distributions for sgRNAs targeting nonessential genes (red) as well as
targeting (blue) and non-targeting control sgRNAs (green) across different
screens conducted with the HD CRISPR library. The screen with the HD
CRISPR library A in HAP1 single cell clone SCC12, which was used for sub-
sequent analyses, is highlighted in red. (B) Fit of a Gaussian mixture
model with 4 components for screens in SCC12. Components 1 (yellow)
and 2 (blue) represent non-targeting and targeting sgRNAs, respectively.
Components 3 and 4 capture the phenotypes of sgRNAs with moderate
and severe viability phenotypes. (C) Comparison of true fold change dis-
tributions of targeting and non-targeting sgRNAs (solid line) to the distri-
butions estimated by the mixture model components (dashed lines) for
both HD CRISPR libraries A and B. (D) Number of sgRNAs associated with
each phenotype group targeting essential genes according to MAGeCK
analysis. For this representation components 3 and 4 are combined in
the red group ‘target phenotype’. sgRNAs are stratified based on their de-
sign: ‘empirical essential’ sgRNAs target context-specific essential genes
and were selected for the HD CRISPR library based on their previous on-
target phenotypes. ‘Empirical nonessential’ sgRNAs are part of previously
published libraries and target broadly nonessential genes. They were se-
lected based on their lack of outlier phenotypes. De novo sgRNAs were
designed using the software cld [34]. (E) Similar plot as D showing
sgRNAs of the HD CRISPR library B associated with each phenotype
group.

Additional file 14: Figure S9. HD CRISPR Library design strategy does
not enrich for sgRNAs with strong phenotypes presumably caused by off-
target effects. Bayes Factor analysis of selected HAP1 context-dependent
nonessential genes across different screens conducted with various
genome-scale CRISPR libraries in cancer cell lines.

Additional file 15: Figure S10. The identified dependency of HAP1
cells on pluripotency genes and the Fanconi anemia pathway is only
partially detected in other published screens conducted in HAP1 cells. (A)
Essentiality of Yamanaka factors and Fanconi anemia pathway members
in individual HD CRISPR HAP1 and previously published TKO HAP1 CRIS
PR screens. Red boxes indicate that the gene was found essential and

gray indicates non-essentiality. White boxes represent genes that are not
targeted by the respective library. (B) siRNA knockdown of the FANCL and
FANCE expression using four individual siRNAs each in the HAP1 Cas9
bulk and HAP1 Cas9 SCC11 and SCC12 cell lines. A pool of non-targeting
siRNAs was used as a control. Surviving cells were stained with crystal
violet solution. (C) Same as (B) for FANCG and FANCM expression. Repre-
sentative images from four independent experiments conducted for each
condition are shown. nt ctrl = non targeting control.

Additional file 16: Table S4. siRNA sequences of siRNAs used in this
study.
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