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Abstract

Background: High throughput methods for profiling the transcriptomes of single cells have recently emerged as
transformative approaches for large-scale population surveys of cellular diversity in heterogeneous primary tissues.
However, the efficient generation of such atlases will depend on sufficient sampling of diverse cell types while
remaining cost-effective to enable a comprehensive examination of organs, developmental stages, and individuals.

Results: To examine the relationship between sampled cell numbers and transcriptional heterogeneity in the context
of unbiased cell type classification, we explored the population structure of a publicly available 1.3 million cell dataset
from E18.5 mouse brain and validated our findings in published data from adult mice. We propose a computational
framework for inferring the saturation point of cluster discovery in a single-cell mRNA-seq experiment, centered around
cluster preservation in downsampled datasets. In addition, we introduce a “complexity index,” which characterizes the
heterogeneity of cells in a given dataset. Using Cajal-Retzius cells as an example of a limited complexity dataset, we
explored whether the detected biological distinctions relate to technical clustering. Surprisingly, we found that
clustering distinctions carrying biologically interpretable meaning are achieved with far fewer cells than the originally
sampled, though technical saturation of rare populations such as Cajal-Retzius cells is not achieved. We additionally
validated these findings with a recently published atlas of cell types across mouse organs and again find using
subsampling that a much smaller number of cells recapitulates the cluster distinctions of the complete dataset.

Conclusions: Together, these findings suggest that most of the biologically interpretable cell types from the 1.3 million
cell database can be recapitulated by analyzing 50,000 randomly selected cells, indicating that instead of profiling few
individuals at high “cellular coverage,” cell atlas studies may instead benefit from profiling more individuals, or many
time points at lower cellular coverage and then further enriching for populations of interest. This strategy is ideal for
scenarios where cost and time are limited, though extremely rare populations of interest (< 1%) may be identifiable
only with much higher cell numbers.
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Background
Recent efforts seek to create a comprehensive cell atlas
of the human body [1, 2]. The advent of single-cell and
single-nucleus mRNA sequencing (RNAseq) in droplet
format [3–5] now enables large-scale sampling of cells
from any tissue, and clustering of these large-scale data-
sets enables cell type and subtype classification [3, 6–8].
However, the human body contains orders of magnitude

more cells than can be analyzed by current technolo-
gies. Therefore, designing effective sampling strategies
are critical to generate a working atlas in an efficient,
cost-effective, and streamlined manner. A recently re-
leased publicly available dataset of 1.3 million single
cells from the E18.5 mouse brain generated with the
10X Chromium [9] provides an opportunity to ex-
plore the relationship between population structure
and the number of sampled cells necessary to reveal
the underlying diversity of cell types. We validate the
findings from this initial dataset in a recently pub-
lished dataset of a variety of mouse organs [5]. Here,
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we present a framework for how researchers can
evaluate whether a dataset has reached saturation,
and we estimate how many cells would be required
to generate an atlas of the sample analyzed here. This
framework can be applied to any organ or cell type-
specific atlas for any organism.

Results
10X Genomics recently generated an open access
dataset of 1.3 million cells captured and sequenced
from an E18.5 mouse brain [10]. After performing
quality control on the full dataset, we created random-
ized data subsets starting at 100,000 cells and subsam-
pled by a factor of two down to a smallest data size of
approximately 6000 cells (Additional file 1: Figure
S1a). To account for potentially pervasive batch effects
in single-cell datasets [11, 12], each subset was ran-
domly selected from the libraries represented in the
original dataset, and Louvain-Jaccard clustering generated
clusters that each represented many of these libraries [7]
(Additional file 1: Figure S1b–d). Visualization of each of
these clusters in the space of the original dataset re-
capitulated the structure of the 1.3 million cells

(Fig. 1a) and the proportional number of cells derived
from each cluster verified that cells from all clusters
were represented in every subset (Additional file 1:
Figure S2a).
To compare clusters from the downsampled subsets

to the clusters in the original dataset, we devised a
cluster preservation metric. This metric examines how
cells from the original clusters are distributed in the
re-clustered subsets; the highest fraction of similarity
defines the level of cluster preservation (Fig. 1b). In
order to explore how much cluster preservation is
achieved with subsets, we scored the cluster preserva-
tion for subsets containing variable numbers of cells
and observed a plateau at around 0.70, emerging
around 25,000 cells (Fig. 1c, Additional file 1: Figure
S2b). Interestingly, this same number was the ceiling
for cluster preservation regardless of reference subset,
suggesting that 30% of cells are not systematically
assigned to the same cluster. These in-between cells
have been previously observed in other datasets [8].
We compared our cluster preservation approach to
the Rand index [6, 13] and to the clusterRepro R
package. The Rand index is a comprehensive number
to indicate across all clusters how well they are
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Fig. 1 Downsampling of cell number preserves major cell type distinctions. a t-SNE plots of the full dataset and five smaller downsampled
subsets. Each dataset is shown in the t-SNE space of the full dataset. Clustering was performed independently in every subset. b Cluster
preservation is a key metric to evaluate similarities and differences between clusters from different analyses, measuring preservation as a fraction
of the original cluster that remains in analyzed subsets. The diagram depicts a simplified cluster preservation calculation (see also the “Methods”
section). c Cluster preservation represents the best instance of the fraction of a cluster that is represented during downsampling. Nine original
subsets are represented and a total of 56 datapoints are represented; the cell number is shown on a log2 (number of cells) score to improve ease
of graph interpretation
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preserved in two analyses and correlates well with
cluster preservation when clusters are very similar,
but across lower preservation scores, the cluster pres-
ervation metric described here stratifies results more
effectively (Additional file 1: Figure S2c). The cluster-
Repro package did not correlate well with the cluster
preservation score, likely a result of its design to
compare data from different studies (Additional file 1:
Figure S2d). These two established cluster preserva-
tion methods are optimized to datasets that are not
single-cell based, and therefore may find less similar-
ity between often noisy single-cell data clusters, but
also demonstrates that the cluster preservation strat-
egy presented here is skewed to find more similarities
between clusters than these methods. These compari-
sons do indicate a role for a cluster preservation metric
such as the one designed here that is intended for cell
type-specific cluster comparison of single-cell RNA-
sequencing data. Furthermore, the results of our cluster
preservation analysis suggest that additional cells are not
useful towards recapitulating original clusters, although

these findings cannot inform the “accuracy” of either
clustering solution.
Different tissues or organisms may be more or less

homogenous in terms of population structure, and un-
derstanding how sampling requirements differ depend-
ing on the complexity of a tissue is essential to
designing effective sampling strategies. Previous ana-
lysis has suggested that deeper sequencing depth is re-
quired for more similar cell types, and that estimating
the diversity of cell types within a tissue can help with
estimating the required sequencing depth [14]. We
therefore developed a complexity index calculation that
enables us to evaluate how many different cell types
likely exist in a dataset by calculating Euclidean dis-
tance between cluster centroids in principal component
space (Fig. 2a). Because the brain is thought to be an
organ comprised of particularly diverse cell types, this
dataset affords a unique opportunity to explore the im-
pact of cell population complexity on clustering and
classification. We selected groups from a hierarchical
tree of clusters from one of the 101,592 cell sets,
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Fig. 2 Downsampling of cell complexity preserves major cell type distinctions. a Cell complexity is calculated in the PCA space of the largest
reference cell set analyzed. A hierarchical tree of clusters is calculated for each subset in the PCA space, and the total distance between the
branches defines the cell complexity (see also the “Methods” section). b Cell complexity downsampling was performed by selecting branches of
a larger tree with varied cell numbers and distances between groups. c Plot of complexity versus cell preservation. Each dot represents a point
from 9 original subsets and a total of 56 datasets are analyzed. Log2 (cell diversity index) is used to easily interpret the dots at lower cell diversity
numbers. d Number of clusters derived from subset analyses as a function of cell complexity. The graph begins to plateau at a cell complexity of
~ 100,000, suggesting there is a maximal number of clusters that can be derived from a sample even as cell number and complexity increases. e
Complexity calculated by cell class annotations show neurons are the most complex of the cell types retrieved
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intentionally generating higher and lower complexity
subsets of varied cell numbers (Fig. 2b, Additional file 1:
Figure S2c). While this complexity index is positively
correlated to cell number, we did generate examples of
lower complexity datasets withmore cells (Additional file 1:
Figure S2d).
We utilized the complexity index as an alterative to

cell number, examining cluster preservation as a func-
tion of complexity. Similar to cell number, we find
that the cluster preservation score plateaus at ap-
proximately 0.7, and above the complexity score of
approximately 100,000, cluster preservation score did
not increase (Fig. 2c, Additional file 1: Figure S2e).
Interestingly, when mapping the number of clusters
that are generated from an initial clustering analysis,
the number of clusters similarly plateaus at the same
complexity index (Fig. 2d, e). These data suggest that
beyond a complexity of 100,000, limited additional in-
formation about the sample can be gained through
clustering analysis.
While cell preservation scores highlight how well ori-

ginal clusters are recapitulated, this assumes the original
clusters are an accurate breakdown of the cells being

analyzed. Alternatively, we devised a cell “cluster conser-
vation” score that takes a bottom-up approach, examining
how the subset clusters are represented in the original
dataset (Fig. 3a). In general, cell cluster conservation
scores are much more stable and increase only incremen-
tally with cell number and cell complexity (Fig. 3b, c).
Cluster conservation can be high either when a larger ori-
ginal cluster gets split into multiple clusters in a subset, or
when original clusters are lumped into a single cluster in
the subset, suggesting a broader utility for cluster conser-
vation in identifying biologically meaningful cell classes
(Additional file 1: Figure S3).
Broadly defined cell type designations are almost en-

tirely conserved between downsampled sets and the
original clustering solution (Fig. 3d). Exploration of
the significant PCs in each of these subsampled sets
indicated that for each of the 100,000 cell sets, PCs
are highly correlated, suggesting that the major
sources of variation are conserved even down to the
smallest subset (Additional file 1: Figure S4). The high
conservation of key sources of variation, including the
gene networks defining cell types, likely explains why
broad cell type assignments in the subsampled
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Fig. 3 Cluster conservation from downsampled datasets. a Cluster conservation is an alternative metric to evaluate similarities and differences
between clusters from different analyses, measuring conservation as a fraction of the subset cluster that originates from the same cluster. The
diagram depicts a simplified cluster conservation calculation (see also Methods). b Cluster conservation as a function of cell number. Points are
averaged within a sample from 56 downsampled subsets. c Cluster conservation as a function of complexity index. Points are averaged within a
sample from 56 downsampled subsets. d When grouping clusters by cell type, cluster conservation is nearly perfect for most cell types. e The
split of single cluster can be measured by counting the number of clusters that share ≥ 1 cell with either the original or subset cluster, as
depicted in the diagram. f Cluster split number of subset clusters as a function of complexity index divided by cell type. Again, a plateau can be
seen regardless of cell type around ~ 100,000. More complex cell types are split more, but complexity rather than cell type appears to indicate
the number of splits that may occur
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datasets remain largely the same even when substan-
tially fewer cells are considered. However, the number
of clusters in each of these initial analyses is smaller
than the total number of clusters derived from the
complete dataset. To identify additional subclusters, we
performed iterative re-clustering (Additional file 1: Figure
S5a–d), which substantially increased the number of clus-
ters from each subset in proportion to the complexity of
the parent cluster (Additional file 1: Figure S5e). Interest-
ingly, iterative clustering highlights new sources of variation
(Additional file 1: Figure S6), and the correlation of iterative
PCA to the original PCA demonstrated a much smaller PC
correlation.
Next, we compared clusters inferred from iterative

analysis with the original clusters from the whole data-
set. Surprisingly, we find that after downsampling,
cells from individual clusters are reorganized into new
clusters, but groups of clusters representing broad cell
types are preserved (Additional file 1: Figure S3b). To
quantify cluster stability, we measured the extent to
which cells from every cluster were split by counting
how many pairwise clusters contain cells from the
cluster of interest (Fig. 3f ). Intriguingly, this cluster
split measurement plateaus at a complexity of about
100,000 regardless of cell type (Fig. 3g), suggesting
that maximal recall of the whole dataset is capped at a
cell number of ~ 25,000 and a complexity index of
100,000. These observations, together with the PC
variance introduced by iterative clustering, strongly
advocate for broad cell type classification followed by
targeted enrichment and subtype characterization, es-
pecially in cases where the broad survey does not yield
a large cell number of lower frequency cell classes.
In order to evaluate the applicability of these findings

to other large datasets, we explored the next largest
existing, published dataset of the mouse. This survey of
multiple organ systems using a distinct technology
called microwell sequencing generated profiles from
400,000 cells, of which 225,000 were high quality [5].
We similarly downsampled this data and explored the
maintenance of cluster structure in tSNE space, cluster
preservation, cluster complexity, and the cluster split.
We similarly find that cluster preservation is high even
at small cell numbers; this dataset is actually conserved
even more completely with cell numbers as small as ~
7000 cells, likely because the major cluster distinctions are
driven by the organ of origin (Additional file 1: Figure S7).
As such, we believe this validation analysis further
supports the idea that a small number of cells can outline
the structure of an atlas and more careful characterization
by enrichment or depletion strategies as previously used
[7] can more thoroughly complete the survey.
The metrics proposed here characterize the efficacy

of varied downsampled subsets in recapitulating initial

clusters, but none of the metrics indicate the sampling
or clustering strategy most effective in recovering bio-
logically interpretable clusters. To better understand
the nature of downsampling, we focused our analysis
on Cajal-Retzius (CR) cells, one of the lowest frequency
cell types in the forebrain. CR cells are essential to the
laminar organization of the brain [15, 16] and have
been determined to originate from several sources
within the brain that impart them with appropriate
transcriptional markers of origin [17]. To explore this
cell type, we isolated cells in the Reln+, Tbr1+ cluster
from the full 1.2 million cells dataset. By iteratively
clustering these cells, we identified 18 distinct clusters
with at least 10 marker genes distinguishing each clus-
ter (Fig. 1a, Additional file 1: Figure S8a,b). The same
process was applied to CR cells from each of the down-
sampled subsets originating from one 100,000 cells
matrix.
Analysis of the clusters resulting from whole set itera-

tive clustering suggested that some clusters were
enriched for the highest and lowest levels of mitochon-
drial content as a fraction per cell which is frequently
used as a quality control criteria [18] (Additional file 1:
Figure S8c), and some had no unique identifiers separ-
ating them from other clusters, only a combination of
marker level differences (Additional file 1: Figure S8d).
Other clusters did have unique marker genes, though
most genes were lost as markers through the downsam-
pling process (Additional file 1: Figure S8e). However,
two groups of clusters did highlight Foxg1 and Lhx9
[19, 20], markers indicating the putative developmental
structure of origin. Violin plots of the expression of
these genes in the full dataset and the downsampled
sets show that while Lhx9 maintains distinct cluster
specific expression throughout downsampling, Foxg1
loses cluster enrichment below 1/24th of the dataset (~
25,000 cells, 815 CR cells). Additionally, exploration of
an atlas of the developing mouse brain [21] shows that
Reln is highly correlated to the genes that are preserved
as cluster markers during some fraction of downsam-
pling. (Igf2, Satb2, Lef1) (Additional file 1: Figure S8f )
and there appears to be potential co-expression of these
markers with markers of Cajal-Retzius cells based upon
examination of the in situ hybrization (ISH) atlas im-
ages at E18.5 (Additional file 1: Figure S8g). Experimen-
tal work has already identified a subpopulation of
dorsomedial Igf2 positive Cajal-Retzius cells [22], and fur-
ther experimental work will be necessary to characterize a
functional role for these and the remaining uncharacter-
ized subpopulations of Cajal-Retzius cells. However, the
remaining, non-preserved cluster markers do not appear
to show any potential overlap in these ISH images
(Additional file 1: Figure S8g). Together, this may indicate
that while a certain minimum number of cells is necessary
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to recover some cell type distinctions, not every cluster
may be biologically relevant, although these data cannot
prove a lack of existence of these clusters and additional
validation may be required to firmly establish the number
of Cajal-Retzius cell subtypes in the developing mouse. In-
stead, technical factors may influence variation during ex-
haustive iterative clustering, even after stringent quality
control. Nonetheless, it is possible that the nine CR clus-
ters from the full dataset without clear markers are bio-
logically important. Similarly, CR clusters from subsets
smaller than 1/24th of the dataset may have biological
meaning, but we were unable to elucidate clear, meaning-
ful distinctions.
The CR subset offers an opportunity to explore

how data subsets compare to the curves we developed
with our various metrics. By plotting these CR sub-
sets along the trajectories of cluster preservation,
complexity, number of clusters, and split curves, we
observe that by these metrics, the analysis has not yet
reached saturation (Fig. 4d). However, our biological
interpretation suggests that the main cell type subsets
are identifiable within the subsets analyzed here. Our
analysis provides a pragmatic analytical framework for
evaluating whether a single cell dataset has been satu-
rated. Specifically, downsampling of the dataset
followed by implementation of the cell preservation
score and complexity index analysis can reveal
whether cluster diversity is saturated. If a linear re-
gression on a plot of number of cells or complexity
versus cluster preservation fits the downsampling with
an R2 less than 0.6 and progressively decreases from
larger cell number, saturation may be reached (Fig. 4e,
f ). This analysis suggests that saturation is much
more quickly reached from the perspective of broad
cell types, while iterative subtype identification is
more fluid and requires careful biological validation.

Discussion
Here, we present a framework for evaluating if cell atlas
datasets have reached saturation by introducing a few
simple and practical principles to evaluate whether
enough cells have been sampled to characterize a hetero-
geneous tissue. Preservation, a metric for how well ori-
ginal clusters are preserved in data subsets, plateaus
around 25,000 cells in the full dataset of 1.3 million cells
from the E18 mouse forebrain. The plateau does not ap-
proach 1, but PCA beyond major subtypes likely intro-
duces technical noise into the analysis, suggesting that
clustering beyond this level of preservation may be an
analytical artifact. This viewpoint is bolstered by the lack
of biological insight and lack of distinct markers in clus-
ters derived from iterative clustering of the Cajal-Retzius
subsets. However, more experimental validation will be

required to definitely validate the populations of cell
types described here and in other atlas-scale studies.
We additionally present the complexity index, which

scores the relative heterogeneity of a sampled cell
population. We note that beyond a certain complexity,
cell preservation also plateaus, at around 100,000 in
our analysis. This plateau suggests that clustering has a
maximal number of divisions that can be generated in a
dataset per analysis, and supports a role for iterative
clustering. However, even with iterative clustering, clus-
ter preservation plateaus. This indicates that only a cer-
tain number of meaningful divisions can be identified
within any dataset and that effective generation of the
cell atlas will require multiple iterations of data collec-
tion, saturation analysis, and tissue level validation. In
particular, efforts to either enrich for rare populations
of interest or to deplete extremely common cell types
will be required to effectively saturate all cell types that
will be discovered in atlas-scale efforts. Using a
low-coverage approach is likely an effective low cost,
time-efficient strategy for surveying broad classes of
cell types, and more high-coverage analysis will be re-
quired to more carefully characterize the subtypes or
very low-frequency cell types within a given tissue. The
analytical framework presented here provides a model
for researchers to explore their own datasets and utilize
data-driven strategies to evaluate when cell number
and complexity have been achieved.

Conclusions
Atlas-scale single-cell sequencing studies are becoming
more common and well funded. These studies have the
opportunity to offer insights into the cell composition of
the human body and commonly used model systems
such as rodents. Here, using cluster preservation and
conservation metrics that we designed, an analysis of
publicly available large-scale datasets indicates that for
initial surveys, smaller numbers of cells will suffice and
enable a larger cohort of individuals to be profiled before
designing more in-depth studies that can characterize
rare populations or particular cell types of interest. This
study design strategy and the tools provided here may
enable more efficient atlas-scale experiments and
maximize the value of the cells profiled.

Methods
Data management
To access the full matrix of the 1.3 million cell set, we
used the python instructions for accessing the HD5
object. The CellRanger software that is used to process
10X data outputs three files for genes, matrix, and
barcode. Because of the size limitations of the full
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dataset, we broke the dataset into 64 parts and wrote
these subsets to file. We then used the Seura-
t[3]Read10X command to assemble these three files in
R. For each subset, we normalized the total counts per
cell to 10,000 and eliminated cells with > 10% mito-
chondrial or ribosomal content as well as those with
fewer than 1000 genes per cell. This quality control fil-
tration reduced the total cell number in the analysis to
1,219,103. We evenly combined these filtered matrices
into four parts, and then into two parts. Using a server
node with 64 cores, a 2.6 GHz processor, and 512 GB
of RAM, any additional sized matrices resulted in the
error “problem too large”. Therefore, matrices of ap-
proximately ~ 100,000 cells were the unit primarily
used in this analysis.
For the dataset from Han et al., we downloaded the

.rds file from the Seurat tutorial page and selected
the cells that met quality control thresholds of at
least 1000 genes per cell. This resulted in a total of
about 225,000 cells for downstream analysis.

Downsampling
Random downsampling to the 101,592 cell sets oc-
curred by repeated (> 10 times) shuffling of the two
matrices of the full data, cutting them each in half,
and recombining to make two random matrices. Once
this had been performed, the 101,592 cell sets were
generated in order from the full dataset, without re-
placement. Subsequent downsampling to smaller data-
sets resulted from random selection of this dataset;
each subset formed the full set of available cells for
the next downsampling (i.e., 50,796 cells were taken
from one set of 101,592 cells, and the next subset of
25,398 cells was sampled from the set of 50,796 cells).
Nine 101,592 cell sets were generated and analyzed for the
sampling parameters included in the main figures.
For the Han et al. dataset, subsets began 112,949

cells, and variable genes were used for clustering ana-
lyses. In addition to repeatedly halving the dataset,
90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10% of
the data was used to generate datapoint for cluster
preservation and complexity.

Clustering
The full dataset was clustered by 10X Genomics using
their CellRanger v1.2 graph-based clustering solution,
loupe browser, and industrial scale computational
resources. Clustering was performed on 100,000 cell
sets and smaller using the graph-based Louvain-Jac-
card method that has been previously described [7].
Briefly, fast PCA is performed on the full centered
and scaled expression matrix for 50 principal compo-
nents. Using the formula laid out by Shekhar et al.,
we calculated the number of significant PCs to be 18
and used this number of PCs for all comparative ana-
lyses. A nearest neighbors calculation is performed in
the PCA space for 10 nearest neighbors, and from
this analysis, a Jaccard distance was calculated for
each pair of neighbors. This data is used as the input
to the Louvain clustering. t-SNE plots were either
generated in the PCA space of each analysis, or the
loupe t-SNE or other clustered plots were used as the
reference coordinates for a smaller dataset.
Iterative clustering was performed in the same way,

but clusters of the same type were grouped together and
used as the input to the clustering process. Hierarchical
clustering was used to group clusters into a tree for dis-
tance calculations as input to the complexity calculation.

Cluster preservation
Because this analysis uses subsets of cells with the same
names as the analyses the clusters are begin compared to,
cluster preservation was calculated by counting the number
of cells that were the same in each pairwise cluster com-
parison. The fraction was calculated using the number of
cells in the smaller dataset’s cluster. Preservation for each
original cluster, then, was the maximum of the compared
fractions across all subset clusters.
Example Perl code was used to generate a matrix of

clusters vs clusters with the fraction of each cluster
presented followed by an underscore and the fraction
of the alternate cluster retained. The difference be-
tween the fractions is simply which analyses denom-
inator is used for the calculation. The order depends
upon the order of input files. Input is cluster identity
file 1, cluster identity file 2, and output file name.
Code:

(See figure on previous page.)
Fig. 4 Downsampling of Cajal-Retzius cells. a t-SNE plot depicting the iterative clustering result of all 20,550 Cajal-Retzius (CR) cells from
the full dataset. b Regional origin is a well-studied classifier of CR subtypes, and two of these markers feature prominently in the
iteratively clustered dataset: Foxg1 is enriched in three clusters while Lhx9 is enriched in seven clusters. c Violin plots of regional markers
in the full datasets and CR subsets of downsampled datasets indicate that these markers are enriched in one more clusters up until 1/24
of the dataset is sampled, after which Foxg1 enrichment is diluted across multiple clusters. Lhx9 enrichment is conserved to even the
smallest downsampled subset. One subset for each downsampling is used. d Enrichment metrics of CR cells in the context of previously
shown metrics indicate that informatically, saturation of this cell type has not yet been achieved. e Framework to evaluate if technical
saturation has been achieved. f Examination of R2 values when incrementally decreasing the number of maximum cells used in the
analysis shows that plateau emerges around an R2 value of 0.6
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Complexity index calculation
Complexity index is a way of measuring relative sample
complexity by using Euclidean distances in the PCA space.
For each set of clusters, the Seurat BuildTree function was
used to hierarchically represent clusters in the PCA space
of the cells being analyzed. Complexity index was calcu-
lated in the same PC space, so for a matrix of 100,000
cells, all downsampled sets were compared in a uniform
PC space. To generate the index, the branch lengths of
the tree were added based upon the centroid distances in
the PCA space. The index is a number in arbitrary units.
Complexity index scales positively with cell number, but it
is possible to generate larger cell numbers with smaller
complexity scores. Downsampling of complexity was per-
formed by picking high and low complexity subsets from
a tree of clusters from one of the 101,592 cell sets.

Cluster conservation
Cluster conservation is a “bottom-up” evaluation of cluster
preservation. Instead of observing how intact original clus-
ters are in the subsets, cluster conservation measures the
maximal correspondence in terms of the fraction of cells
the same in pairwise cluster comparisons from the perspec-
tive of the new clusters. It uses the same calculation as clus-
ter conservation but is the reciprocal analysis. Cluster
conservation can be high even with low cluster preserva-
tion, particularly when there is a large imbalance of the
number of clusters in the two analyses being compared.

Split calculation
Measuring the number of splits is done by simply counting
the number of pairwise clusters that have any cells from a
cluster of interest, identifying how split up a cluster is. For
example, even if cluster preservation is only 0.50, but its
cluster split is 2, then it is a single cluster evenly split and
could be considered a strongly preserved cluster. However,
a cluster with preservation of 0.5 but a split of 10 would be
considered to be much less preserved as its cells are found
in a wide variety of subsequently generated clusters.

Additional file

Additional file 1: Figure S1. Library and cluster composition metrics.
Figure S2. Complexity index scales with downsampling. Figure S3.
Schematic of conservation versus preservation metrics. Figure S4. Major
sources of variation are preserved with downsampling. Figure S5. Major
cluster features and subgroup determination. Figure S6. New sources of
variation emerge in data subsets. Figure S7. Independent dataset validation
of downsampling preservation. Figure S8. Cajal-Retzius cell diversity. tSNE plot
of 20K CR cells from whole dataset colored by Reln and Tbr1 expression indi-
cating the clustering isolated canonically marked CR cells. (PDF 11394 kb)
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