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Archaeal ancestors of eukaryotes: not so
elusive any more

Eugene V. Koonin
Abstract

The origin of eukaryotes is one of the hardest
problems in evolutionary biology and sometimes
raises the ominous specter of irreducible complexity.
Reconstruction of the gene repertoire of the last
eukaryotic common ancestor (LECA) has revealed a
highly complex organism with a variety of advanced
features but no detectable evolutionary intermediates
to explain their origin. Recently, however, genome
analysis of diverse archaea led to the discovery of
apparent ancestral versions of several signature
eukaryotic systems, such as the actin cytoskeleton and
the ubiquitin network, that are scattered among
archaea. These findings inspired the hypothesis that
the archaeal ancestor of eukaryotes was an unusually
complex form with an elaborate intracellular
organization. The latest striking discovery made by
deep metagenomic sequencing vindicates this
hypothesis by showing that in phylogenetic trees
eukaryotes fall within a newly identified archaeal
group, the Lokiarchaeota, which combine several
eukaryotic signatures previously identified in different
archaea. The discovery of complex archaea that are
the closest living relatives of eukaryotes is most
compatible with the symbiogenetic scenario for
eukaryogenesis.
of the eukaryotic cells were already present in the last
A recent discovery enabled by single-cell genomics tech-
nology seems to be a huge step towards understanding
the origin of eukaryotes [1, 2]. To explain why this ap-
pears to be the case, I discuss here the formidable diffi-
culty of the problem, the previous salient observations
and the proposed solutions.
A eukaryotic cell is a strikingly complex macromolecular

aggregate by any account, but specifically when compared
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with archaeal and bacterial cells. To begin with, a typical
eukaryotic cell has a three to four orders of magnitude
larger volume than most bacteria and archaea [3–5]. This
size difference translates into a difference in the physical
principles of cell functioning: unlike most bacteria and
archaea in which proteins, nucleic acids and small mole-
cules diffuse more or less freely, the intracellular space in
eukaryotes is fully compartmentalized so that molecules
are distributed through specialized transport mechanisms
[6, 7]. The compartmentalization and transport are
supported by the elaborate system of intracellular mem-
branes which includes the membrane of the eponymous
eukaryotic organelle, the nucleus, and by an advanced
cytoskeleton that consists of actin filaments and tubulin
microtubules and includes numerous additional, dedicated
proteins. Crucially, the great majority of eukaryotes pos-
sess the power-producing organelles, the mitochondria or
their derivatives, that are now commonly accepted to have
evolved from α-proteobacteria by endosymbiosis [8, 9].
Although some unicellular eukaryotes lack mitochondria,
evolutionary reconstructions clearly point to secondary
loss in all amitochondrial groups [10, 11].
Thus, eukaryotes show a qualitatively different level of

cellular organization from that of archaea and bacteria,
and there are no detectable evolutionary intermediates.
Comparative analysis of eukaryotic cells and genomes
indicates that the signature advanced functional systems

eukaryotic common ancestor (LECA). These ancestral
features include the actin and tubulin-based forms of
cytoskeleton, the nuclear pore, the spliceosome, and the
ubiquitin signaling network, to mention only several
aspects of the inherent organizational complexity of
eukaryotic cells [12–16]. The emergence of these funda-
mental facets of advanced cellular organization presents
a challenge of such scale that Darwin’s famous scenario
for the evolution of the eye looks like a straightforward
solution to an easy problem. To some, the enigma of
eukaryogenesis can appear so perplexing that the infam-
ous concept of ‘irreducible complexity’ has sneaked into
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the scientific mainstream [17], although debunking of
these ideas has not been long in coming [18]. Below I
discuss the recent advances in evolutionary genomics
that make the origin of eukaryotes much less mysterious
than it appeared even recently.
Phylogenetic position of the eukaryotes: sister
group to archaea?
Molecular phylogenetics and phylogenomics offer a com-
plementary perspective on the origin of eukaryotes. The
standard ‘tree of life’, based initially on the sequences of
16S rRNA and subsequently on the sequences of other
universal genes, such as protein components of the trans-
lation and transcription systems, unequivocally identifies
the ancestry of the information-processing systems of
eukaryotes as archaeal. The early versions of the tree in
the standard textbooks had eukaryotes as the sister group
of archaea, to the exclusion of bacteria [19–22]. However,
an alternative phylogenetic method applied to the same
16S rRNAs has suggested a different, so-called eocyte tree
topology [23, 24] (Fig. 1). In the eocyte tree, eukaryotes
form a clade within the archaeal branch, as the sister group
to the ‘eocytes’, the archaeal phylum that is currently known
as Crenarchaeota [23–26]. Subsequent phylogenetic studies
have reached various conclusions on the relationships be-
tween eukaryotes and archaea. Depending on the data set
and the phylogenetic methodology, support has been re-
ported for the standard placement of eukaryotes as a sister
group to archaea, the eocyte topology, or various positions
of the eukaryotes within the phylum Euryarchaeota, which
includes mostly methanogens and halophiles [27]. Further-
more, phylogenomic analysis of multiple eukaryotic genes
of archaeal provenance has pointed to their likely origins
from different groups of archaea. Such findings seem to be
most compatible with extensive horizontal gene transfer be-
tween the major groups of archaea, although artifacts and
biases, caused in particular by differences in the characteris-
tic evolutionary rates of these groups, could be responsible
for some of the observations [28].
The uncertainty of the phylogenetic position of eukary-

otes with respect to the archaea resulted from conflicting
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Fig. 1. Schematic phylogenetic trees reflecting the archaeal and
eocyte ancestry of eukaryotes. a The three-domain archaeal tree. b
The two-domain eocyte tree
placements obtained with different methods and datasets
and even a declaration of a “phylogenomic impasse” [29].
Ironically, however, shortly after the impasse was declared,
progress became apparent due, above all, to the discovery
of new archaeal phyla such as Korarchaeota [30], Thau-
marchaeota and Aigarchaeota [31]. The latest, extensive
metagenomic and single-cell genomics studies have led
to a veritable ‘bonanza’ of putative new archaeal phyla
[32–35] (Fig. 2). Several independent phylogenies of
multiple conserved genes have consistently supported
the monophyly of a deeply rooted archaeal “TACK”
superphylum, named after its constituent phyla, Thau-
marchaeota, Aigarchaeota, Crenarchaeota and Korarch-
aeota [36–40], and also provisionally designated the
new kingdom Proteoarchaeota [41, 42]. A subsequent
comprehensive phylogenetic study has suggested that
the Proteoarchaeota additionally includes two novel
phyla, Bathyarchaeota and Geoarchaeota [34] (an alter-
native analysis has suggested inclusion of Geoarchaeota
into Crenarchaeota [43]; Fig. 2).
The discovery of the new archaeal phyla and the puta-

tive kingdom Proteoarchaeota stimulated renewed phy-
logenomic effort on elucidation of the archaeal ancestry
of eukaryotes. Two independent, thorough phylogenetic
analyses of rRNA and universal protein-coding genes
demonstrated significant support for the affinity of
eukaryotes with Proteoarchaeota but not with any spe-
cific lineage thereof [37, 44, 45], whereas another study
placed eukaryotes within the Proteoarchaeota, as a sister
group to Thaumarchaeota [46]. These results suggest an
exit from the aforementioned impasse by indicating
that eukaryotes most likely evolved from within the
archaea, in accord with an ‘extended eocyte hypothesis’
[47]. Nevertheless, the conclusions of these phyloge-
nomic analyses once again heavily depend on the data
sets and methods employed, and arguably fall short of
conclusively resolving the evolutionary relationship be-
tween archaea and eukaryotes.

The chimeric nature of eukaryotic genomes and
scenarios of eukaryogenesis
Regardless of the method employed, phylogenomic ana-
lysis of eukaryotic genes with homologs in bacteria and/or
archaea reveals a fundamental split into genes of archaeal
provenance and those of bacterial provenance. The ‘ar-
chaeal’ class includes primarily genes involved in informa-
tion transmission whereas the ‘bacterial’ genes represent
the ‘operational’ category, in particular metabolic enzymes,
transporters and signal transduction systems. Notably, the
‘bacterial’ genes outnumber the ‘archaeal’ genes about two-
fold, indicative of a major contribution of bacteria to the
genetic composition of eukaryotes [28, 48]. Given the
apparent rarity of recent acquisitions of bacterial genes by
eukaryotes, it appears likely that most of that contribution
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Fig. 2. A schematic evolutionary tree of the archaea: Proteoarchaeota, Lokiarchaeota and the likely origin of eukaryotes. DPANN is the proposed
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other phylogenetic analyses suggesting this [41, 42, 74]. The position of the Lokiarchaeota is from [1]. In addition to the eukaryotes, the Lokiarchaeota
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comes from the massive transfer of the (proto)mitochon-
drial genes to the nuclear genome, although relatively few
genes can be traced specifically to α-proteobacteria. How-
ever, the complexity of the α-proteobacterial pangenome
has made it impossible to infer the gene complement of
the proto-mitochondrial endosymbiont with any preci-
sion, and could account for the apparent heterogeneity of
the bacterial heritage of eukaryotes [49, 50]. A recent ana-
lysis of the relative age of the ‘bacterial’ genes in eukaryotes
using a comprehensive set of genomes and advanced
comparative-genomic and phylogenetic methods indeed
suggests that, apart from the chloroplast-derived genes in
plants and algae, the overwhelming majority of these genes
have been acquired in a single sweep which is thought to
be the influx from the primary endosymbiont [51].
The preponderance of genes of bacterial origin in

eukaryotes begs the question: why are eukaryotes usually
(even in current biology textbooks) viewed as a sister
group of archaea (or possibly, eocytes) and not of α-
proteobacteria? I contend that there is indeed no justifica-
tion for this view, and the only consistent characterization
of the evolutionary status of eukaryotes is as archaeo-
bacterial chimeras. That said, not all genes are equal, and
the archaeal heritage of eukaryotes includes most of the
genes that are universal to the eukaryotic organisms or to
all cellular life forms and are highly conserved in sequence
[51, 52]. This set of (predominantly) informational genes
reflects the vertical trend in the evolution of life far better
than any other genes and accordingly is best suitable for
the construction of the “tree of life” [53]. Nevertheless, the
history of life is by no account reducible to the phylogeny
of informational genes [54, 55], for which the chimeric
origin and composition of the eukaryotic genome is argu-
ably the best case in point.
Taking into account the apparent acquisition of the

endosymbiont prior to LECA, the scenarios of eukaryo-
genesis split into two groups according to the postulated
nature of the host [10]. In the first group of hypotheses,
the host is envisioned as a primitive, amitochondrial,
unicellular, phagotrophic eukaryote [56, 57]. This hypo-
thetical ancestral eukaryote is often called archezoan.
The attractive feature of these hypotheses stems from
the postulated phagotrophic lifestyle of the archezoa: like
extant amoeba, the archezoa would routinely engulf
bacteria one of which would eventually turn into the
endosymbiont [58, 59]. The problem with the archezoan
scenarios is twofold. First, and most obviously, no primary
amitochondrial eukaryotes (would-be archezoa) are known.
Second, perhaps more controversially, quantitative argu-
ments have been presented that a cell of typical eukaryotic
size and complexity is unsustainable without multiple
power-producing organelles such as the mitochondria.
The scenarios of the second group are based on the

postulate that the cell that captured the endosymbiont
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was a regular archaeon, and endosymbiosis actually trig-
gered eukaryogenesis, including the emergence of the
endomembrane system and other signature attributes of
eukaryotic cells [10, 38, 60]. These symbiogenetic scenar-
ios do not assume any unknown ancestral cell types, and
arguably credible causative chains have been proposed for
the origin of the eukaryotic cellular organization. The weak-
ness of these scenarios is in the apparent extreme rarity of
endosymbiosis among bacteria and archaea.
Could there be a third way that would combine the

advantages of the two types of scenarios while avoiding
the drawbacks of each? I address this possibility in the
discussion that follows.

The scattered archaeal ‘eukaryome’ and the
possibility of a complex archaeal ancestor of
eukaryotes
Recent analysis of diverse archaeal genomes resulted in a
series of striking observations. It turns out that the evolu-
tionary relationship between archaea and eukaryotes is
not limited to the core of information-processing systems
but also involves several genes and entire gene suites that
are essential for eukaryotic intracellular organization [61].
Surprisingly, however, these homologs of the signature
eukaryotic genes are scattered among different archaea.
Perhaps the most notable case is the ubiquitin system that
has been identified in the single sequenced genome from
the new phylum Aigarchaeota, Candidatus Caldiarch-
aeum subterrenium [31]. Ubiquitin-like proteins and the
ubiquitin-conjugating machinery have been previously
identified in other archaea but these were distant homo-
logs of the respective eukaryotic proteins, so the ancestral
relationship remained unclear [62, 63]. The case of C. sub-
terrenium is different. In this genome, the genes for a ubi-
quitin homolog, ubiquitin ligase and a key deubiquitinase
form an operon, and most important, in the respective
phylogenetic trees, these proteins clearly cluster with the
eukaryotic homologs. Thus, there is little doubt that the
archaeal ancestry of the ubiquitin systems has been traced.
Equally consequential is the discovery of archaeal actins
(dubbed crenactins) that are present in several groups of
Proteoarchaeota [64] and have been shown to form fila-
ments resembling the eukaryotic cytoskeleton [65]. Other
examples of apparent archaeal ancestors of key eukaryotic
systems involved in the formation of intracellular struc-
tures are tubulins [66] and the ECSRT-III complex that
participates in cell division and intracellular membrane
remodeling [67, 68]. Notably, these signature genes were
found mostly in different groups of Proteoarchaeota, in ac-
cord with the latest phylogenomic results discussed above.
The discovery of this scattered “archaeal eukaryome”

has prompted the hypothesis of a complex archaeal host
for the protomitochondrial endosymbiont . Given the ex-
tensive horizontal gene transfer in archaea combined with
the observations that most archaeal lineages apparently
evolved under a streamlining regime [40, 69], it has been
speculated that this ancestral archaeal form combined,
within a single genome, various components of the eukar-
yome that are scattered among the extant archaea. This
hypothetical organism, although distinctly archaeal, might
have been capable of a primitive form of phagocytosis
which would facilitate the capture of the endosymbiont
[38, 61, 64]. Conceivably, this ancestral archaeon would
actively acquire genes via horizontal gene transfer, thus
suggesting an alternative explanation for the different af-
finities of ‘bacterial’ genes in eukaryotes.
An unexpected recent discovery made by methods of

single cell genomics indicates that archaea resembling the
putative complex ancestors of eukaryotes are not extinct.
Loki: archaeal ancestor of eukaryotes found alive
and well?
Enter Loki. Metagenomic analysis of sea floor sediments
near a hydrothermal vent site in the Arctic named Loki’s
Castle has revealed a putative deep archaeal lineage within
Proteoarchaeota [1, 2]. Being keenly interested in archaea
that potentially could shed light on the origin of eukary-
otes, Thijs Ettema and colleagues undertook deep sequen-
cing of the metagenomic samples from Loki’s Castle and
succeeded in assembling a nearly complete genome as
well as several partial genomes from a new archaeal group
they named Lokiarchaeota (simply Loki, for short). The
results of the Loki genome analysis exceed the boldest
expectations. Indeed, Loki combines the two key features
predicted for the archaeal ancestor of eukaryotes by the
hypothesis discussed in the preceding section. First, in a
phylogenetic tree of 36 highly conserved genes encoding
components of information-processing systems, eukary-
otes convincingly fall within the Loki branch (Fig. 2). This
finding settles the issue of the evolutionary relationship
between eukaryotes and archaea: there is no longer any
reasonable doubt that the information-processing systems
of eukaryotes evolved from a specific branch deep within
the archaeal tree, and now that branch is known.
Second, and equally important, the genome of Loki

reveals the assortment of the signature eukaryotic fea-
tures that has been predicted for the archaeal ancestor
of eukaryotes [38, 61, 64]. Specifically, Loki encodes
crenactins, homologs of eukaryotic gelsolins (another
family of essential cytoskeleton proteins), the ESCRT-
III complex, an expanded family of small Ras-like
GTPases and the complete ubiquitin system. This gene
repertoire translates into a confident prediction of a
complex cytoskeleton and membrane remodeling sys-
tems and is compatible with a rudimentary phagocytic
capability. Moreover, phylogenetic analysis indicates
that most of these homologs of signature eukaryotic
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genes occupy the basal position in the respective trees,
adding credence to the ancestral relationship [1].
Thus, Loki is by far the best current candidate for the

role of a direct descendant of the archaeal ancestor of
eukaryotes. It is crucial to emphasize that, all its genomic
and predicted organizational complexity notwithstanding,
Loki is a typical archaeon and not the hypothetical arche-
zoan. Despite the presence of elements of cytoskeleton, key
features that are readily detectable in any eukaryotic gen-
ome, such as components of the nuclear pore and the
spliceosome, as well as spliceosomal introns, are missing,
and the entire replication machinery as well as the suite of
membrane biogenesis enzymes all have telltale archaeal
features [1]. Thus, although the discovery of Loki falls short
of eliminating the archezoan scenario of eukaryogenesis
once and for all, it substantially increases the credibility of
the symbiogenetic scenario.

Implications and remaining open questions
The extremely hard problem of eukaryogenesis now ap-
pears perceptibly more tractable thanks to the advances
of comparative genomics of archaea and in particular
the spectacular progress of metagenomics. The path to
this new understanding was paved by the sequencing of
many diverse archaeal genomes followed by detailed
phylogenomic analysis. These efforts produced mounting
evidence of the evolutionary relationship between Pro-
teoarchaeota and Eukaryota, and enabled the partial
reconstruction of the genome of a complex archaeal an-
cestor of eukaryotes. The discovery of Loki precipitated
the breakthrough. The origin of eukaryotes from a spe-
cific group of archaea, lodged deep within the archaeal
evolutionary tree and specifically within Proteoarchaeota,
now should be considered an established fact. Moreover,
we also know that the closest extant archaeal relatives of
eukaryotes encode a variety of likely ancestors of signature
eukaryotic genes that contribute to the cytoskeleton and
other aspects of eukaryotic cellular organization. These
observations make the symbiogenetic scenario of eukaryo-
genesis look more credible than it ever did in the past.
The newly achieved clarity in our understanding of

these key aspects of eukaryogenesis calls for reassess-
ment of some of the most general concepts in biology.
The first one is the representation of the entire history
of life as a single evolutionary tree, a grand idea that
goes back to the famous single illustration of Darwin’s
Origin of Species [70]. The symbiogenetic scenario of
eukaryogenesis flatly defies this concept because under
this scenario, a major kingdom of life, the eukaryotes,
emerged in a non-tree-like manner, through fusion of
different, distant branches of the tree. The importance of
trees for understanding the evolution of individual
genes, gene ensembles and major taxa, especially those
that encompass multicellular eukaryotes, is undeniable
[71]. However, the new findings on the origin of eukary-
otes as well as the origin of archaeal phyla [72] indicate
that major transitions in evolution often, perhaps typic-
ally, occur through the fusion of cells and/or genomes of
distantly related organisms. The second, not unrelated
general theme is the number and nature of the primary
domains of life. In the late 1980s, based on the rRNA
trees, Woese and colleagues developed the three-domain
scheme (Fig. 1a) [19]. The placement of eukaryotes within
the archaeal branch that has been clinched by the discov-
ery of Loki refutes this scheme and shows that the only
consistent interpretation of the phylogeny of the universal
(primarily informational) genes involves two primary
domains: bacteria and archaea (with eukaryotes included)
(Fig. 1b) [45].
Loki is named after the trickster god of Norse myth-

ology. He is supposed to have a malicious streak about
him but he is also the harbinger of change [73]. Surely,
the transition that Loki or his relative seems to have
brought about, the origin of eukaryotes, was one of the
most momentous in the history of our planet.
What next? Does Loki bridge archaea and eukaryotes

as stated in the title of the article by Ettema and col-
leagues? I think this is still only a halfway bridge. A lot of
difficult work remains to be done to join the two banks.
First, Loki certainly is not the archaeal ancestor of eukary-
otes: that life form existed over a billion years ago. It is
entirely possible and actually likely that even closer relatives
of eukaryotic ancestors may be discovered, perhaps with an
even greater organizational complexity. Loki is only the
beginning of the quest for those ancestors, by no means
the end. However, further, even possibly exhaustive
characterization of archaeal (and bacterial) diversity by
methods of metagenomics and single cell genomics is
the easy part of the deal. The challenge lies in the in-
vestigation of the biology of these organisms. Although
we can never know what precisely happened more than
a billion years ago, to me, demonstration of the ar-
chaeal–bacterial endosymbiosis in the laboratory would
mean the completion of the bridge. This is an ex-
tremely tall order but then again, who would have pre-
dicted 25 years ago that complete genome sequencing
of microbes that do not grow in culture would become
a near routine exercise?
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