Skip to main content

Table 3 Performance on an independent test set of different models

From: T4Seeker: a hybrid model for type IV secretion effectors identification

Models

SP

Precision

Recall

ACC

F1-score

MCC

AUC

Single feature models

 DR

0.895

0.89

0.807

0.85

0.846

0.704

0.923

 ESM-average

0.901

0.903

0.873

0.887

0.887

0.774

0.943

 ESM-flatten-1024

0.851

0.858

0.866

0.858

0.851

0.717

0.925

 LSTM

0.785

0.812

0.884

0.836

0.846

0.673

0.920

Concatenated features models

 LSTM + ESM-average + DR

0.822

0.842

0.902

0.863

0.871

0.727

0.941

 T4Seeker = LSTM + ESM-flatten-1024 + DR

0.944

0.945

0.92

0.932

0.932

0.864

0.970

Ablation studies

 ESM-average + DR

0.92

0.92

0.846

0.882

0.880

0.767

0.937

 ESM-flatten-1024 + DR

0.907

0.907

0.875

0.890

0.891

0.781

0.944

 LSTM + DR

0.907

0.906

0.857

0.881

0.881

0.764

0.944

 LSTM + ESM-average

0.916

0.913

0.839

0.877

0.874

0.756

0.961

 LSTM + ESM-flatten-1024

0.907

0.907

0.866

0.886

0.886

0.773

0.961

Other models

 Bastion4

0.963

0.958

0.821

0.89

0.885

0.79

0.892

 T4SEpp

0.822

0.846

0.929

0.876

0.885

0.757

0.875

 DeepSecEbd

0.972

0.970

0.848

0.909

0.904

0.825

0.910

 T4SEfinder

0.495

0.647

0.884

0.694

0.747

0.413

0.690

  1. The AUC of T4Seeker is the highest on the test set, so it is bold