Skip to main content

Table 2 Performance of concatenated features and ablation studies on validation dataset

From: T4Seeker: a hybrid model for type IV secretion effectors identification

Features

SP

Precision

Recall

ACC

F1-score

MCC

AUC

Concatenated features

 LSTM + ESM-average + DR

0.87

0.862

0.872

0.87

0.866

0.789

0.938

 T4Seeker = LSTM + ESM-flatten-1024 + DR

0.875

0.869

0.888

0.881

0.88

0.821

0.947

Ablation studies

 ESM-average + DR

0.863

0.852

0.841

0.851

0.846

0.702

0.908

 ESM-flatten-1024 + DR

0.829

0.827

0.866

0.845

0.845

0.767

0.920

 LSTM + DR

0.859

0.859

0.839

0.847

0.848

0.79

0.921

 LSTM + ESM-average

0.874

0.862

0.85

0.858

0.853

0.793

0.934

 LSTM + ESM-flatten-1024

0.871

0.865

0.793

0.825

0.82

0.722

0.929

  1. AUC of T4Seeker is the highest among fusion features on validation sets, so it is bolded