Skip to main content

Table 1 Performance of single features of MLP on fivefold cross-validation test

From: T4Seeker: a hybrid model for type IV secretion effectors identification

Features

SP

Precision

Recall

ACC

F1-score

MCC

AUC

Amino acid composition features

 kmer

0.816

0.812

0.827

0.821

0.819

0.641

0.873

 DR

0.853

0.841

0.833

0.842

0.836

0.683

0.903

 AAC

0.835

0.826

0.820

0.827

0.821

0.655

0.884

 DPC

0.816

0.812

0.827

0.821

0.819

0.641

0.873

 TPC

0.813

0.814

0.855

0.833

0.833

0.667

0.884

 PC-PseAAC

0.815

0.81

0.825

0.818

0.815

0.638

0.879

 PC-PseAAC-General

0.815

0.81

0.825

0.818

0.815

0.638

0.879

 SC-PseDNC

0.812

0.812

0.850

0.831

0.831

0.661

0.886

 SC-PseDNC-General

0.812

0.813

0. 85

0.831

0.831

0.661

0.887

 GAAC

0.702

0.708

0.749

0.727

0.727

0.452

0.77

 GDPC

0.788

0.773

0.766

0.776

0.769

0.552

0.827

C/T/D features

 CTDC

0.780

0.786

0.847

0.813

0.814

0.627

0.859

 CTDD

0.58

0.632

0.687

0.636

0.624

0.3

0.702

 CTDT

0.784

0.789

0.849

0.816

0.817

0.632

0.866

Evolutionary scale modeling features

 ESM-flatten

0.828

0.827

0.866

0.846

0.845

0.692

0.899

 ESM-flatten-1024

0.809

0.815

0.895

0.847

0.85

0.723

0.908

 ESM-average

0.864

0.864

0.903

0.882

0.882

0.766

0.922

 ESM-max

0.826

0.83

0.895

0.84

0.841

0.720

0.898

Long short-term memory features

 LSTM

0.842

0.833

0.804

0.825

0.818

0.724

0.906

  1. On the validation set, DR, ESM-flatten-1024, LSTM AUC is over 90%, which has further mining potential, so they are bold