Figure 1
From: Role of aerobic glycolysis in genetically engineered mouse models of cancer

Aerobic glycolysis, the citric acid cycle, and key glycolytic shunts. The diagram depicts glycolysis and ending with pyruvate and lactate. Intermediates are named and shown with space-filled models. The GLUT transporter and enzymes are shown with key rate-limiting steps highlighted in red. Reactions branching to the left are the pentose phosphate pathway, which produces ribose and NADPH; phosphofructokinase-fructose bisphosphatase (PFKFB), which produces fructose-2,6-bisphosphate, an allosteric activator of phosphofructokinase (PFKM); PFKM production of fructose-1,6-bisphosphate; and phophoglycerate dehydrogenase (PHGDH)-mediated production of serine. The last two allosterically activate pyruvate kinase M2 (PKM2). Pyruvate is shown converted to acetyl-CoA for further oxidation through the citric acid cycle depicted with intermediates forming in the mitochondrion. HK2, hexokinase 2; GPI, glucose-6-phosphate isomerase; ALDA, aldolase A; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK1, phosphoglycerate kinase 1; PGM, phosphoglycerate mutase; ENO1, enolase 1; LDHA, lactate dehydrogenase. Allosteric regulation is depicted by green dotted lines.